C++动态内存管理与源码剖析
引言
在本篇文章中,我们主要剖析c++中的动态内存管理,包括malloc、new expression、operator new、array new和allocator内存分配方法以及对应的内存释放方式和他们之间的调用关系,另外也包括一些会引发的陷阱如内存泄漏。
动态内存管理函数及其调用关系
c++中的动态内存分配和释放方式有很多,主要包括:
- malloc与free
- new expression与delete expression
- array new 与array delete
- operator new和operator delete
- allocator中的allocate与deallocate
除此之外还有placement new,但需要注意placement new不是用来内存分配和释放的,而是在已分配的内存上构造对象。
他们之间的调用关系如下:

下面我们来具体看下每一种分配和释放方式的使用和原理。
malloc与free
void *p1 = malloc(32); //分配32字节的内存
free(p1);//释放指针p1指向的内存
malloc函数以字节数为参数,返回指向分配的内存的首地址的void指针;而free函数释放给定指针指向的内存。
operator new与operator delete
void *p6 = ::operator new(32); //分配32字节
::operator delete(p6);
PS:底层调用malloc和free。gnu的实现:
_GLIBCXX_WEAK_DEFINITION void *
operator new (std::size_t sz) _GLIBCXX_THROW (std::bad_alloc)
{
void *p;
/* malloc (0) is unpredictable; avoid it. */
if (__builtin_expect (sz == 0, false))
sz = 1;
while ((p = malloc (sz)) == 0)
{
new_handler handler = std::get_new_handler ();
if (! handler)
_GLIBCXX_THROW_OR_ABORT(bad_alloc());
handler ();
}
return p;
}
_GLIBCXX_WEAK_DEFINITION void
operator delete(void* ptr) noexcept
{
std::free(ptr);
}
new expression与delete expression
首先来看下简单的使用:
int *p2 = new int;
delete p2;
string *p3 = new string("hello");
delete p3;
new expression完成两样工作:
申请并分配内存。
调用构造函数。
string *p3 = new string("hello");被编译器替换成下面的工作:
string *p3;
try{
void * tmp_p = operator new(sizeof(string));
p3 = static_cast<string *>(tmp_p);
//string 通过宏被替换为basic_string,string的实际实现是basic_string,这里不是重点。
p3 -> basic_string::basic_string("hello"); //编译器可以这么调用,但我们自己写代码时不能。即我们不能以这种方式通过指针显式调用构造函数。
}catch (std::bad_alloc){
//若分配失败,构造函数不执行
}
我们看到,原来new expression的内存申请和分配是通过调用operator new()来完成的。
delete expression也完成两样工作:
- 调用析构函数。
- 释放内存。
delete p3;被编译器替换成下面的工作:
p3 -> ~string();//通过指针直接调用析构函数。我们自己写代码时也可以这么做。
operator delete(p3);//释放内存
array new 与array delete
//Complex为自定义类,只需要知道Complex类中没有指针成员。
Complex *pca = new Complex[3];//3次构造函数
delete[] pca;//3次析构函数
string *psa = new string[3];//3次构造函数
delete[] psa;//3次析构函数
array new调用一次内存分配函数(底层源码实现中,其实是调用operator new,只是调用的时候计算好了大小。因此,有上下两个cookie。)和多次构造函数。正因为调用多次构造函数,因此只能调用无参构造函数。
Complex和string的很大不同之处在于,string有指针成员,布局如下图:


array delete调用多次析构函数,一次内存释放函数(底层源码实现中其实是调用一次operator delete)。
我们来看下,如果本应该使用array delete的地方使用了delete expression会发生什么:
Complex *pca = new Complex[3];//3次构造函数
delete pca;//1次析构函数
string *psa = new string[3];//3次析构函数
delete psa;//1次析构函数
对于Complex,我们使用了array new调用了3次构造函数,却没有使用array delete而使用了delete expression,因此只调用了一次析构函数。那么,会发生内存泄漏吗? 不会。因为Complex的析构函数是无关痛痒的(trivial),因为没有要释放的关联的内存(Complex对象自身所占内存之外没有隐式占用的内存)。
同样,对于string,我们使用了array new调用了3次构造函数,却没有使用array delete而使用了delete expression,因此只调用了一次析构函数。那么,会发生内存泄漏吗? 会。因为string的析构函数不是无关痛痒的(non-trivial),因为要释放关联的内存(我们知道string底层是通过char[]存储的,析构时会释放掉那些实际存储字符的内存)。
PS: 具体的内存布局例子(涉及到cookie、对齐填充padding等等)。
int *p = new int[10];
delete[]p;
//delete p 亦可。int无关痛痒。
VC6中的内存布局如下:

另:
Demo *p = new Demo[3];//Demo为析构函数non-trivial的自定义class
delete[] p;
//delete p; //错误
VC6中的内存布局(注意红框内的3):

allocate与deallocate
#ifdef __GNUC__ //GNUC环境下
void *p7 = allocator<int>().allocate(4); //非static函数,通过实例化匿名对象调用allocate,分配4个int的内存。
allocator<int>().deallocate((int *)p7, 4);
void *p8 = __gnu_cxx::__pool_alloc<int>().allocate(4);
__gnu_cxx::__pool_alloc<int>().deallocate((int *)p8, 4);
#endif
allocator为模板,实例化时需提供模板类型参数,上面的程序中模板类型参数为<int>,allocate的参数为4则allocate函数分配时就分配4个int的内存。释放内存时需要给出指向所要释放的内存位置的指针,以及要释放的内存大小,单位为模板类型参数类型的大小。
__pool_alloc也为模板,除底层调用malloc的时机不同外(__pool_alloc使用内存池降低cookie带来的overhead),使用和上面的allocator相同。
placement new
用法:
char *buf = new char[sizeof(Complex) * 3];
Complex *pc = new(buf) Complex(1, 2);
new(buf + 1) Complex(1, 3);
new(buf + 2) Complex(1, 3);
delete[] buf;
Complex *pc = new(buf) Complex(1, 2);被编译器替换成如下的工作:
Complex *pc;
try{
void *tmp = operator new(sizeof(Complex), buf);//该重载版本并不分配内存。buf指针已经指向内存。
pc = static_cast<Complex*>(tmp);
pc->Complex::Complex(1, 2);//构造函数
}catch(std::bad_alloc){
//若分配失败则不执行构造函数。实际上没有分配,因为之前已经分配完。
}
上面使用的GNU库重载版本的operator new()函数如下:
// Default placement versions of operator new.
_GLIBCXX_NODISCARD inline void* operator new(std::size_t, void* __p) _GLIBCXX_USE_NOEXCEPT
{ return __p; }
可以看到确实没有分配内存。
重载内存管理函数
new expression、delete expression都不可重载。
operator new、operator delete可以重载:
- 重载global
operator new、operator delete,即::operator new(size_t)与::operator delete(void *)。(一般不会重载全局的该函数,因为影响太广) - 重载某个class的
operator new、operator delete
若某个类重载了operator new、operator delete,则用new expression实例化该类时,调用的是类的operator new、operator delete,否则,调用globaloperator new、operator delete。
array new、array delete也可以重载。同样分全局的和类所属的。
具体如何重载这些内存管理函数,以及如何使用重载的内存管理函数,将在下一篇文章中分析。
参考资料
[1] 《STL源码剖析》
[2] 《Effective C++》3/e
[3] 《C++ Primer》5/e
[4] 侯捷老师的课程
[5] gcc开源库:https://github.com/gcc-mirror/gcc
C++动态内存管理与源码剖析的更多相关文章
- 内存管理初始化源码4:add_active_range
我们在阅读源码时,函数功能可以分为两类:1. bootmem.c 2. page_alloc.c. 1. bootmem.c是关于bootmem allocator的,上篇文章已经简述过. 2. pa ...
- 内存管理初始化源码1:setup_arch
源码声明:基于Linux kernel 3.08 1. 在kernel/arch/mips/kernel/head.S中会做一些特定硬件相关的初始化,然后会调用内核启动函数:start_kernel: ...
- 内存管理初始化源码3:bootmem
start_kernel ——> setup_arch ——> arch_mem_init ——> bootmem_init ——> init_bootmem_node: 此时 ...
- 内存管理初始化源码2:setup_arch
PFN相关宏说明: /* kernel/include/linux/pfn.h */ PFN : Page Frame Number(物理页帧) /* * PFN_ALIGN:返回地址x所在那一页帧的 ...
- 内存管理初始化源码5:free_area_init_nodes
start_kernel ——> setup_arch ——> arch_mem_init ——> |——> bootmem_init |——> device_tree ...
- Spring源码剖析依赖注入实现
Spring源码剖析——依赖注入实现原理 2016年08月06日 09:35:00 阅读数:31760 标签: spring源码bean依赖注入 更多 个人分类: Java 版权声明:本文为博主原 ...
- (原创滴~)STL源码剖析读书总结1——GP和内存管理
读完侯捷先生的<STL源码剖析>,感觉真如他本人所说的"庖丁解牛,恢恢乎游刃有余",STL底层的实现一览无余,给人一种自己的C++水平又提升了一个level的幻觉,呵呵 ...
- linux0.11内核源码剖析:第一篇 内存管理、memory.c【转】
转自:http://www.cnblogs.com/v-July-v/archive/2011/01/06/1983695.html linux0.11内核源码剖析第一篇:memory.c July ...
- 菜鸟nginx源码剖析数据结构篇(九) 内存池ngx_pool_t[转]
菜鸟nginx源码剖析数据结构篇(九) 内存池ngx_pool_t Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog.csdn. ...
随机推荐
- 一文说透 Go 语言 HTTP 标准库
本篇文章来分析一下 Go 语言 HTTP 标准库是如何实现的. 转载请声明出处哦~,本篇文章发布于luozhiyun的博客:https://www.luozhiyun.com/archives/561 ...
- Unity接入ShareSDK实现QQ登录和QQ分享、微信分享
原文链接:Unity接入ShareSDK实现QQ登录和QQ分享.微信分享 由于微信登录需要企业审核,我这里就不说明了,有需要的可以去官网看一下文档,和QQ登录比多了一个打包的步骤. 第一步:到官网申请 ...
- IPVS的ICMP报文处理-由内到外
这里主要明与NAT/Masq转发模式相关的ICMP报文处理,但也会提及由于出错引发的IPVS系统主动发送的ICMP报文. 1.ICMP由外到内处理流程入口 入口函数ip_vs_in实质上挂载在netf ...
- 04 jumpserver资产管理
4.资产管理: (1)管理用户: 管理用户是资产(被控服务器)上的 root,或拥有 NOPASSWD: ALL sudo 权限的用户, JumpServer 使用该用户来 `推送系统用户`.`获取资 ...
- 105、如何使用u盘制做linux镜像
105.1. 105.2. 105.3. 105.4.
- Solon 1.5.11 发布,增加国际化插件
Solon 是一个轻量的Java基础开发框架.强调,克制 + 简洁 + 开放的原则:力求,更小.更快.更自由的体验.支持:RPC.REST API.MVC.Job.Micro service.WebS ...
- CentOS-Docker搭建远程监控服务器指标
注:远程监控服务器指标,可查看.CPU.内存.网络信息等,搭建依赖Docker环境,可参考:yum安装Docker环境 服务端:Grafana(可视化展示) + Prometheus(数据源,配置客户 ...
- SpringMVC(1)流程框架总体介绍
SpringMVC属于SpringFrameWork的后续产品,已经融合在Spring Web Flow里面.Spring 框架提供了构建 Web 应用程序的全功能MVC 模块,其功能和Strtus2 ...
- Hibernate框架(四)缓存策略+lazy
Hibernate作为和数据库数据打交道的框架,自然会设计到操作数据的效率问题,而对于一些频繁操作的数据,缓存策略就是提高其性能一种重要手段,而Hibernate框架是支持缓存的,而且支持一级和二级两 ...
- 基于redis的分布式锁防止高并发重复请求
需求: 我们先举个某系统验证的列子:(A渠道系统,业务B系统,外部厂商C系统)(1)B业务系统调用A渠道系统,验证传入的手机.身份证.姓名三要素是否一致.(2)A渠道系统再调用外部厂商C系统.(3)A ...