题目传送门

Description

给出一个长度为 \(n\) 的 \(01\) 串为 \(s\),设 \(t_i\) 为 \(s_{1,2,..,i}\),有 \(m\) 次查询,每次查询给出 \(l,r\),求 \([l,r]\) 之间 \(t_i\) 的最长公共后缀长度的最大值。

\(n,m\le 10^5\)

Solution

本来不想写题解的,但想了想还是写一下吧。

不难想到,假设 \(f_i\) 为 \(t_i\) 在后缀自动机上对应的点,那么就相当于查询:

\[\max\{\text{deep}(\text{lca}(f_i,f_j))\},l\le i,j\le r
\]

考虑到在线不好搞,所以我们离线下来。然后你发现按左端点排序根本就不好做(不要问我怎么知道的),然后你发现按右端点排序之后就好做了。

我们可以在加入一个点的时候把 \(\text{parent}\) 树上都标记一下,那么如果过程中对于点 \(u\),如果已经标记过 \(i\) 了,那么说明对于当前右端点,左端点 \(\le i\) 的区间 \(u\) 都可以产生贡献,就可以树状数组修改一下。由此我们也可以看出,我们需要保存的是最新标记的标记。

复杂度显然是 \(\Theta(n\log^2n)\) 。

Code

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define MAXN 200005 template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} char s[MAXN];
int n,m,ans[MAXN]; struct Bit_Tree{
int maxn[MAXN];
int lowbit (int x){return x & (-x);}
void modify (int x,int v){x = n - x + 1;for (Int i = x;i <= n;i += lowbit (i)) maxn[i] = max (maxn[i],v);}
int query (int x){x = n - x + 1;int ans = 0;for (Int i = x;i;i -= lowbit (i)) ans = max (ans,maxn[i]);return ans;}
}T1; struct node{
int ind,qL,qR;
bool operator < (const node &p)const{return qR < p.qR;}
};
vector <node> S[MAXN]; int lst = 1,cnt = 1,ch[MAXN][2],len[MAXN],git[MAXN],fail[MAXN]; void extend (int c){
int f = lst,q = ++ cnt;lst = q,len[q] = len[f] + 1;
while (f && !ch[f][c]) ch[f][c] = q,f = fail[f];
if (!f) fail[q] = 1;
else{
int x = ch[f][c];
if (len[x] == len[f] + 1) fail[q] = x;
else{
int p = ++ cnt;
fail[p] = fail[x],len[p] = len[f] + 1,memcpy (ch[p],ch[x],sizeof (ch[p]));
fail[x] = fail[q] = p;while (f && ch[f][c] == x) ch[f][c] = p,f = fail[f];
}
}
} struct LCT{
int id[MAXN],fa[MAXN],son[MAXN][2];
bool rnk (int x){return son[fa[x]][1] == x;}
bool Isroot (int x){return son[fa[x]][rnk(x)] != x;}
void rotate (int x){
int y = fa[x],z = fa[y],k = rnk(x),w = son[x][!k];
if (!Isroot (y)) son[z][rnk(y)] = x;son[x][!k] = y,son[y][k] = w;
if (w) fa[w] = y;fa[x] = z,fa[y] = x;
}
void Pushdown (int x){
if (son[x][0]) id[son[x][0]] = id[x];
if (son[x][1]) id[son[x][1]] = id[x];
}
void Pushall (int x){
if (!Isroot (x)) Pushall (fa[x]);
Pushdown (x);
}
void Splay (int x){
Pushall (x);
while (!Isroot (x)){
int y = fa[x];
if (!Isroot (y)) rotate (rnk(x) == rnk(y) ? y : x);
rotate (x);
}
}
void Access (int x,int now){
for (Int y = 0;x;x = fa[y = x]){
Splay (x);
if (id[x]) T1.modify (id[x],len[x]);
son[x][1] = y,id[x] = now;
}
}
}T2; signed main(){
read (n,m),scanf ("%s",s + 1);
for (Int i = 1;i <= n;++ i) extend (s[i] - '0'),git[i] = lst;
for (Int i = 1,qL,qR;i <= m;++ i) read (qL,qR),S[qR].push_back (node{i,qL,qR});
for (Int i = 1;i <= cnt;++ i) T2.fa[i] = fail[i];
for (Int i = 1;i <= n;++ i){
T2.Access (git[i],i);
for (node g : S[i]) ans[g.ind] = T1.query (g.qL);
}
for (Int i = 1;i <= m;++ i) write (ans[i]),putchar ('\n');
return 0;
}

题解「雅礼集训 2017 Day7」事情的相似度的更多相关文章

  1. 「雅礼集训 2017 Day7」事情的相似度

    「雅礼集训 2017 Day7」事情的相似度 题目链接 我们先将字符串建后缀自动机.然后对于两个前缀\([1,i]\),\([1,j]\),他们的最长公共后缀长度就是他们在\(fail\)树上对应节点 ...

  2. 【刷题】LOJ 6041 「雅礼集训 2017 Day7」事情的相似度

    题目描述 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的有相同的事情发 ...

  3. 【LOJ 6041】「雅礼集训 2017 Day7」事情的相似度

    Description 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的 ...

  4. 【loj6041】「雅礼集训 2017 Day7」事情的相似度 后缀自动机+STL-set+启发式合并+离线+扫描线+树状数组

    题目描述 给你一个长度为 $n$ 的01串,$m$ 次询问,每次询问给出 $l$ .$r$ ,求从 $[l,r]$ 中选出两个不同的前缀的最长公共后缀长度的最大值. $n,m\le 10^5$ 题解 ...

  5. loj#6041. 「雅礼集训 2017 Day7」事情的相似度(后缀自动机+启发式合并)

    题面 传送门 题解 为什么成天有人想搞些大新闻 这里写的是\(yyb\)巨巨说的启发式合并的做法(虽然\(LCT\)的做法不知道比它快到哪里去了--) 建出\(SAM\),那么两个前缀的最长公共后缀就 ...

  6. LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度

    我可以大喊一声这就是个套路题吗? 首先看到LCP问题,那么套路的想到SAM(SA的做法也有) LCP的长度是它们在parent树上的LCA(众所周知),所以我们考虑同时统计多个点之间的LCA对 树上问 ...

  7. loj#6041. 「雅礼集训 2017 Day7」事情的相似度(SAM set启发式合并 二维数点)

    题意 题目链接 Sol 只会后缀数组+暴躁莫队套set\(n \sqrt{n} \log n\)但绝对跑不过去. 正解是SAM + set启发式合并 + 二维数点/ SAM + LCT 但是我只会第一 ...

  8. 【LOJ6041】「雅礼集训 2017 Day7」事情的相似度(用LCT维护SAM的parent树)

    点此看题面 大致题意: 给你一个\(01\)串,每次询问前缀编号在一段区间内的两个前缀的最长公共后缀的长度. 离线存储询问 考虑将询问离线,按右端点大小用邻接表存下来(直接排序当然也可以啦). 这样的 ...

  9. LOJ #6041. 「雅礼集训 2017 Day7」事情的相似度 LCT+SAM+线段树

    Code: #include<bits/stdc++.h> #define maxn 200003 using namespace std; void setIO(string s) { ...

随机推荐

  1. 写webpack插件报警告Tapable.plugin is deprecated. Use new API on .hooks instead解决方案,webpack4插件新写法

    最近写了个小插件报了个警告,然后去百度了一下,全都给我说extract-text-webpack-plugin这个插件有问题要更新,我也是无语了,这个插件我用都没用,百度翻了下齐刷刷全是这个答案,搞得 ...

  2. Mysql时间戳转Java时间戳

    MySQL 时间戳和Java返回的时间戳是不一样的 例如: 当前时间是 2014-08-04 10:42:55.204000 使用mysql时间戳函数UNIX_TIMESTAMP 返回的结果为: 14 ...

  3. Electron团队为什么要干掉remote模块

    Electron团队提供remote模块给开发者, 主要目的是为了简化渲染进程和主进程互访的难度, 这个目的却是达到了. 但也带来了很多问题, 归纳起来主要分为以下四点: 第一:它很慢 通过remot ...

  4. Python3-sqlalchemy-orm 回滚

    #-*-coding:utf-8-*- #__author__ = "logan.xu" import sqlalchemy from sqlalchemy import crea ...

  5. nginx 开启,关闭,重启

    2021-08-191. 启动 # 判断配置文件是否正确 cd /usr/local/nginx/sbin ./nginx -t # 启动 cd usr/local/nginx/sbin ./ngin ...

  6. 并发编程之:AQS源码解析

    大家好,我是小黑,一个在互联网苟且偷生的农民工. 在Java并发编程中,经常会用到锁,除了Synchronized这个JDK关键字以外,还有Lock接口下面的各种锁实现,如重入锁ReentrantLo ...

  7. Java并发编程工具类 CountDownLatch CyclicBarrier Semaphore使用Demo

    Java并发编程工具类 CountDownLatch CyclicBarrier Semaphore使用Demo CountDownLatch countDownLatch这个类使一个线程等待其他线程 ...

  8. MySQL——获取元数据

    ---------------------------------------------------------------------------------------------------- ...

  9. Robot Framework 面试题

    什么是 RF 基于可扩展关键字驱动的自动化测试框架 什么是可扩展关键字驱动 可扩展意味着可以自己开发,也可以调用第三方的关键字库 关键字驱动意味着测试用例都是围绕着关键字运行的 RF 的原理(框架?) ...

  10. epoll经典代码示例

    1. epoll原理 原理性的知识不再另做说明,我在这里附上收藏整理的两篇经典文章: select与epoll的本质关系. select.poll.epoll之间的区别. 2. epoll服务器端经典 ...