这个题是一个经典的维护路径信息的题,对于路径上的修改,我们只需要把对应的链\(split\)上来,然后修改最上面的点就好,注意pushdown的时候的顺序是先乘后加

然后下传乘法标记的时候,记得把对应的\(add\)标记也要乘,因为就跟线段树的下传标记类似

// luogu-judger-enable-o2
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
#include<set>
#define int long long using namespace std; inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
} const int maxn = 1e5+1e2;
const int mod = 51061; int ch[maxn][3];
int n,m;
int sum[maxn],val[maxn];
int che[maxn],add[maxn];
int fa[maxn],size[maxn];
int st[maxn];
int rev[maxn]; int son(int x)
{
if (ch[fa[x]][0]==x) return 0;
else return 1;
} bool notroot(int x)
{
return ch[fa[x]][0]==x || ch[fa[x]][1]==x;
} void update(int x)
{
size[x]=size[ch[x][0]]+size[ch[x][1]]+1;
sum[x]=(sum[ch[x][0]]+sum[ch[x][1]]+val[x])%mod;
} void reverse(int x)
{
swap(ch[x][0],ch[x][1]);
rev[x]^=1;
} void jia(int x,int d)
{
sum[x]+=size[x]*d;
sum[x]%=mod;
val[x]+=d;
val[x]%=mod;
add[x]+=d;
add[x]%=mod;
} void cheng(int x,int d)
{
sum[x]*=d;
sum[x]%=mod;
val[x]*=d;
val[x]%=mod;
add[x]*=d;
add[x]%=mod;
che[x]*=d;
che[x]%=mod;
}
void pushdown(int x)
{
if (che[x]!=1)
{
if (ch[x][0]) cheng(ch[x][0],che[x]);
if (ch[x][1]) cheng(ch[x][1],che[x]);
che[x]=1;
}
if (add[x])
{
if (ch[x][0]) jia(ch[x][0],add[x]);
if (ch[x][1]) jia(ch[x][1],add[x]);
add[x]=0;
}
if (rev[x])
{
if (ch[x][0]) reverse(ch[x][0]);
if (ch[x][1]) reverse(ch[x][1]);
rev[x]=0;
}
} void rotate(int x)
{
int y=fa[x],z=fa[y];
int b=son(x),c=son(y);
if (notroot(y)) ch[z][c]=x;
fa[x]=z;
ch[y][b]=ch[x][!b];
fa[ch[x][!b]]=y;
ch[x][!b]=y;
fa[y]=x;
update(y);
update(x);
} void splay(int x)
{
int y=x,cnt=0;
st[++cnt]=y;
while (notroot(y)) y=fa[y],st[++cnt]=y;
while (cnt) pushdown(st[cnt--]);
while (notroot(x))
{
int y=fa[x],z=fa[y];
int b=son(x),c=son(y);
if (notroot(y))
{
if (b==c) rotate(y);
else rotate(x);
}
rotate(x);
}
update(x);
} void access(int x)
{
for (int y=0;x;y=x,x=fa[x])
{
splay(x);
ch[x][1]=y;
update(x);
}
} void makeroot(int x)
{
access(x);
splay(x);
reverse(x);
} int findroot(int x)
{
access(x);
splay(x);
while (ch[x][0])
{
pushdown(x);
x=ch[x][0];
}
return x;
} void split(int x,int y)
{
makeroot(x);
access(y);
splay(y);
} void link(int x,int y)
{
makeroot(x);
if (findroot(y)!=x) fa[x]=y;
} void cut(int x,int y)
{
split(x,y);
if (ch[x][0] || ch[x][1] || fa[x]!=y || ch[y][son(x)^1]) return;
fa[x]=ch[y][0]=0;
} char s[10]; signed main()
{
n=read(),m=read();
for (int i=1;i<=n;i++) che[i]=1,add[i]=0,val[i]=1;
for (int i=1;i<n;i++)
{
int x=read(),y=read();
link(x,y);
}
//split(1,3);
//cout<<sum[3]<<endl;
for(int i=1;i<=m;i++)
{
scanf("%s",s+1);
if (s[1]=='+')
{
int x=read(),y=read(),z=read();
split(x,y);
val[y]+=z;
val[y]%=mod;
sum[y]+=size[y]*z;
sum[y]%=mod;
add[y]+=z;
add[y]%=mod;
}
else
if (s[1]=='-')
{
int x=read(),y=read(),xx=read(),yy=read();
cut(x,y);
link(xx,yy);
}
else
if (s[1]=='/')
{
int x=read(),y=read();
split(x,y);
printf("%lld\n",sum[y]%mod);
}
else
{
int x=read(),y=read(),z=read();
//cout<<z<<endl;
split(x,y);
sum[y]*=z;
sum[y]%=mod;
val[y]*=z;
val[y]%=mod;
add[y]*=z;
add[y]%=mod;
che[y]*=z;
che[y]%=mod;
}
} return 0;
}

洛谷1501 Tree II(LCT,路径修改,路经询问)的更多相关文章

  1. 洛谷P1501 Tree II

    LCT 还是LCT的板子,下放标记和那道线段树2一样,先放乘..之前用char忘记getchar,调了好久... 注意开long long!! #include <bits/stdc++.h&g ...

  2. 【洛谷1501】[国家集训队] Tree II(LCT维护懒惰标记)

    点此看题面 大致题意: 有一棵初始边权全为\(1\)的树,四种操作:将两点间路径边权都加上一个数,删一条边.加一条新边,将两点间路径边权都加上一个数,询问两点间路径权值和. 序列版 这道题有一个序列版 ...

  3. 点分治模板(洛谷P4178 Tree)(树分治,树的重心,容斥原理)

    推荐YCB的总结 推荐你谷ysn等巨佬的详细题解 大致流程-- dfs求出当前树的重心 对当前树内经过重心的路径统计答案(一条路径由两条由重心到其它点的子路径合并而成) 容斥减去不合法情况(两条子路径 ...

  4. 洛谷 P2764 LibreOJ 6002 最小路径覆盖问题

    题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...

  5. BZOJ 2631 [国家集训队]Tree II (LCT)

    题目大意:给你一棵树,让你维护一个数据结构,支持 边的断,连 树链上所有点点权加上某个值 树链上所有点点权乘上某个值 求树链所有点点权和 (辣鸡bzoj又是土豪题,洛谷P1501传送门) LCT裸题, ...

  6. Poj1741/洛谷P4718 Tree(点分治)

    题面 有多组数据:Poj 无多组数据:洛谷 题解 点分治板子题,\(calc\)的时候搞一个\(two\ pointers\)扫一下统计答案就行了. #include <cmath> #i ...

  7. 洛谷P1198 [JSOI2008]最大数(单点修改,区间查询)

    洛谷P1198 [JSOI2008]最大数 简单的线段树单点问题. 问题:读入A和Q时,按照读入一个字符会MLE,换成读入字符串就可以了. #include<bits/stdc++.h> ...

  8. 洛谷.1501.[国家集训队]Tree II(LCT)

    题目链接 日常zz被define里没取模坑 //标记下放同线段树 注意51061^2 > 2147483647,要开unsigned int //*sz[]别忘了.. #include < ...

  9. 洛谷P1501 [国家集训队]Tree II(LCT)

    题目描述 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2:将树中原有的 ...

随机推荐

  1. Learning ROS: Running ROS across multiple machines

    Start the master ssh hal roscore Start the listener ssh hal export ROS_MASTER_URI=http://hal:11311 r ...

  2. mybaits源码分析--自定义插件(七)

    一.MyBatis插件 插件是一种常见的扩展方式,大多数开源框架也都支持用户通过添加自定义插件的方式来扩展或者改变原有的功能,MyBatis中也提供的有插件,虽然叫插件,但是实际上是通过拦截器(Int ...

  3. js 中连续的 3 个点 three dots (...) in javascript

    这个叫扩展运算符 https://dev.to/sagar/three-dots---in-javascript-26ci 5 种用法 1 function myFunc(...[x, y, z]) ...

  4. etcd学习(9)-etcd中的存储实现

    etcd中的存储实现 前言 V3和V2版本的对比 MVCC treeIndex 原理 MVCC 更新 key MVCC 查询 key MVCC 删除 key 压缩 周期性压缩 版本号压缩 boltdb ...

  5. QT之ARM平台的移植

      在开发板中运行QT程序的基本条件是具备QT环境,那么QT的移植尤为重要,接下载我将和小伙伴们一起学习QT的移植. 一.准备材料 tslib源码 qt-everywhere-src-5.12.9.t ...

  6. adb 常用命令大全(2)- 基础命令

    adb 基本语法 adb [-d|-e|-s <serialNumber>] <command> 命令行参数 -d:指定当前唯一通过 USB 连接的 Android 设备为命令 ...

  7. 创建 Spring容器的三种方式

    一.src路径下打包完在war包的classes层级下 1.Spring容器创建的三种方式 创建Bean容器之后创建对象: 其中第三种使用的是BeanFactory对象 2.spring通过配置文件用 ...

  8. linux系列之:告诉他,他根本不懂kill

    目录 简介 使用kill来杀死进程 kill的深入用法 僵尸进程和kill java thread dump 总结 简介 和很多程序员打过交道,这些程序员可能熟知for遍历的好几种写法,但是却对写出来 ...

  9. ByteArrayOutputStream小测试

    import java.io.*; import org.junit.Test; public class ByteArrayOutputStreamTest { @Test public void ...

  10. WPF WPF中解决内存泄露的几点提示与解决方法

    http://www.cnblogs.com/LastPropose/archive/2011/08/01/2124359.html 一直以来用WPF做一个项目,但是开发中途发现内存开销太大,用ANT ...