GPU随机采样速度比较
技术背景
随机采样问题,不仅仅只是一个统计学/离散数学上的概念,其实在工业领域也都有非常重要的应用价值/潜在应用价值,具体应用场景我们这里就不做赘述。本文重点在于在不同平台上的采样速率,至于另外一个重要的参数检验速率,这里我们先不做评估。因为在Jax中直接支持vmap的操作,而numpy的原生函数大多也支持了向量化的运算,两者更像是同一种算法的不同实现。所以对于检验的场景,两者的速度区别更多的也是在硬件平台上。
随机采样示例
关于Jax的安装和基本使用方法,读者可以自行参考Jax的官方文档,需要注意的是,Jax有CPU、GPU和TPU三个版本,如果需要使用其GPU版本的功能,还需要依赖于jaxlib,另外最好是指定安装对应的CUDA版本,这都是安装过程中所踩过的一些坑。最后如果安装的不是GPU的版本,运行Jax脚本的时候会有相关的提示说明。
随机采样,可以是针对一个给定的连续函数,也可以针对一个离散化的列表,但是为了更好的扩展性,一般问题都会转化成先获取均匀的随机分布,再转化成其他函数形式的分布,如正态分布等。所以这里我们更加的是关注下均匀分布函数的效率:
import numpy as np
import time
import jax.random as random
key = random.PRNGKey(0)
print ('An small example of numpy sampler: \n{}'.format(np.random.uniform(low=0,high=1,size=5)))
print ('An small example of jax sampler: \n{}'.format(random.uniform(key,shape=(5,),minval=0, maxval=1)))
data_size = 400000000
time0 = time.time()
s = np.random.uniform(low=0,high=1,size=data_size)
print ('The numpy time cost is: {}s'.format(time.time()-time0))
time1 = time.time()
v = random.uniform(key,shape=(data_size,),minval=0, maxval=1)
print ('The jax time cost is: {}s'.format(time.time()-time1))
执行结果如下:
An small example of numpy sampler:
[0.33654613 0.20267496 0.86859762 0.14940831 0.30321738]
An small example of jax sampler:
[0.57450044 0.09968603 0.39316022 0.8941783 0.59656656]
The numpy time cost is: 3.6664984226226807s
The jax time cost is: 0.10985755920410156s
同样是在生成双精度浮点数的情况下,我们可预期的GPU的速率在数据长度足够大的情况下一定是会更快的,这个运算结果也佐证了这个说法。
总结概要
关于工业领域中可能使用到的随机采样,更多的是这样的一个场景:给定一个连续或者离散的分布,然后进行大规模的连续采样,采样的同时需要对每一个得到的样点进行分析打分,最终在这大规模的采样过程中,有可能被使用到的样品可能只有其中的几份。那么这样的一个抽象问题,就非常适合使用分布式的多GPU硬件架构来实现。
版权声明
本文首发链接为:https://www.cnblogs.com/dechinphy/p/sampler.html
作者ID:DechinPhy
更多原著文章请参考:https://www.cnblogs.com/dechinphy/
打赏专用链接:https://www.cnblogs.com/dechinphy/gallery/image/379634.html
腾讯云专栏同步:https://cloud.tencent.com/developer/column/91958
GPU随机采样速度比较的更多相关文章
- 关于乱序(shuffle)与随机采样(sample)的一点探究
最近一个月的时间,基本上都在加班加点的写业务,在写代码的时候,也遇到了一个有趣的问题,值得记录一下. 简单来说,需求是从一个字典(python dict)中随机选出K个满足条件的key.代码如下(py ...
- 随机采样和随机模拟:吉布斯采样Gibbs Sampling实现高斯分布参数推断
http://blog.csdn.net/pipisorry/article/details/51539739 吉布斯采样的实现问题 本文主要说明如何通过吉布斯采样来采样截断多维高斯分布的参数(已知一 ...
- 随机采样和随机模拟:吉布斯采样Gibbs Sampling实现文档分类
http://blog.csdn.net/pipisorry/article/details/51525308 吉布斯采样的实现问题 本文主要说明如何通过吉布斯采样进行文档分类(聚类),当然更复杂的实 ...
- Pandas排列和随机采样
随机重排序 import pandas as pd import numpy as np from pandas import Series df = pd.DataFrame(np.arange(5 ...
- hive随机采样
hive> select * from account limit 10;OKaccount.accountname account.accid account.platid ac ...
- 使用 numpy.random.choice随机采样
使用 numpy.random.choice随机采样: 说明: numpy.random.choice(a, size=None, replace=True, p=None) 示例: >> ...
- 利用shuf对数据记录进行随机采样
最近在用SVM为分类器做实验,但是发现数据量太大(2000k条记录)但是训练时间过长...让我足足等了1天的啊!有人指导说可以先进行一下随机采样,再训练,这样对训练结果不会有太大影响(这个待考证).所 ...
- Pandas随机采样
实现对DataFrame对象随机采样 pandas是基于numpy建立起来的,所以numpy大部分函数可作用于DataFrame和Series数据结构. numpy.random.permutatio ...
- YOLO---Darknet下的 GPU vs CPU 速度
YOLO---Darknet下的 GPU vs CPU 速度 目录 一.基础环境 二.安装Darknet-yolo v3 三.CPU下测试 四.GPU下测试 五.测试速度对比结论 正文 一.基础环境 ...
随机推荐
- Windows7下面手把手教你安装Django - Hongten
我所使用的操作系统是Windows7,内存是2G 在搜索了一些资料发现,对于Django的安装,详细的真的很少,都说的很简化,然而,这篇blog可以手把手教你成功安装Django 对于Django的详 ...
- MySql数据库索引-聚集索引和辅助索引
InnoDB存储引擎索引: B+树索引:不能找到一个给定键值的具体行,能找到的只是被查找数据行所在的页.然后把页加载到内存,在查询所要的数据. 全文索引: 哈希索引:InnoDB会根据表的使用情况自动 ...
- Zabbix5.0实现监控系统登陆失败告警
环境zabbix5.0,配置思路,通过添加监控项和触发器实现,监控项监控对应的日志文件,触发器过滤日志文件中的关键字,当出现failed时就发出告警. 监控项配置 类型选择zabbix客户端主动式,键 ...
- sed 修改替换包含关键字的整行
查找关键字 user10 所在的行,替换整行内容为aaaaaaaaaa #sed -i "s/^.*user10.*$/aaaaaaaaaa/" useradd.txt
- 基于消息队列 RocketMQ 的大型分布式应用上云最佳实践
作者|绍舒 审核&校对:岁月.佳佳 编辑&排版:雯燕 前言 消息队列是分布式互联网架构的重要基础设施,在以下场景都有着重要的应用: 应用解耦 削峰填谷 异步通知 分布式事务 大数据处理 ...
- k8s入坑之路(13)服务迁移(定时任务 微服务 传统服务)
定时任务迁移kubernetes 服务迁移步骤 1.安装好java 2.安装好maven 项目打包 mvn package 测试传参运行 java -cp cronjob-demo-1.0-SNAPS ...
- 1组-Alpha冲刺-2/6
一.基本情况 队名:震震带着六菜鸟 组长博客:https://www.cnblogs.com/Klein-Wang/p/15535649.html 小组人数:7人 二.冲刺概况汇报 王业震 过去两天完 ...
- 一文分析 Android现状及发展前景
Coding这些年,一直低头"搬砖",好像从未仔细审视过Android的发展现状,亦未好好思考Android的发展前景."低头干活,还要抬头看路",写一篇文章简 ...
- 团队内部密码共享方案:KeePassXC+微盘(企业微信)
目录 需求描述 适用场景 安装使用 KeePassXC初始化 浏览器插件安装设置 1.火狐 2.Edge 3.Chrome 软件-插件的链接 登陆网站并保存密码 (企业微信)微盘共享内部数据库 其他 ...
- [spojQTREE6]Query on a tree VI
考虑如下构造: 新建一条边$(0,1)$,并将原树以0为根建树,记$fa_{x}$为$x$的父亲(其中$1\le x\le n$) 维护两棵森林,分别记作$T_{0/1}$,每一条边恰属于一棵,其中$ ...