rsa 数学推论
RSA加密算法是最常用的非对称加密算法,CFCA在证书服务中离不了它。但是有不少新来的同事对它不太了解,恰好看到一本书中作者用实例对它进行了简化 而生动的描述,使得高深的数学理论能够被容易地理解。我们经过整理和改写特别推荐给大家阅读,希望能够对时间紧张但是又想了解它的同事有所帮助。
 
  RSA是第一个比较完善的公开密钥算法,它既能用于加密,也能用于数字签名。RSA以它的三个发明者Ron Rivest, Adi Shamir,
 Leonard
Adleman的名字首字母命名,这个算法经受住了多年深入的密码分析,虽然密码分析者既不能证明也不能否定RSA的安全性,但这恰恰说明该算法有一定的
可信性,目前它已经成为最流行的公开密钥算法。
  RSA的安全基于大数分解的难度。其公钥和私钥是一对大素数(100到200位十进制数或更大)的函数。从一个公钥和密文恢复出明文的难度,等价于分解两个大素数之积(这是公认的数学难题)。 
  RSA的公钥、私钥的组成,以及加密、解密的公式可见于下表:
可能各位同事好久没有接触数学了,看了这些公式不免一头雾水。别急,在没有正式讲解RSA加密算法以前,让我们先复习一下数学上的几个基本概念,它们在后面的介绍中要用到:
一、 什么是“素数”?
 
 素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。例如,15=3*5,所以15不是素数;又
如,12=6*2=4*3,所以12也不是素数。另一方面,13除了等于13*1以外,不能表示为其它任何两个整数的乘积,所以13是一个素数。素数也称
为“质数”。
二、什么是“互质数”(或“互素数”)?
  小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”这里所说的“两个数”是指自然数。
  判别方法主要有以下几种(不限于此):
(1)两个质数一定是互质数。例如,2与7、13与19。
(2)一个质数如果不能整除另一个合数,这两个数为互质数。例如,3与10、5与 26。
(3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。
(4)相邻的两个自然数是互质数。如 15与 16。
(5)相邻的两个奇数是互质数。如 49与 51。
(6)大数是质数的两个数是互质数。如97与88。
(7)小数是质数,大数不是小数的倍数的两个数是互质数。如 7和 16。
(8)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。等等。
三、什么是模指数运算? 
  指数运算谁都懂,不必说了,先说说模运算。模运算是整数运算,有一个整数m,以n为模做模运算,即m mod n。怎样做呢?让m去被n整除,只取所得的余数作为结果,就叫做模运算。例如,10 mod 3=1;26 mod 6=2;28 mod 2 =0等等。 
  模指数运算就是先做指数运算,取其结果再做模运算。如
  好,现在开始正式讲解RSA加密算法。
算法描述:
(1)选择一对不同的、足够大的素数p,q。
(2)计算n=pq。
(3)计算f(n)=(p-1)(q-1),同时对p, q严加保密,不让任何人知道。
(4)找一个与f(n)互质的数e,且1<e<f(n)。
(5)计算d,使得de≡1 mod f(n)。这个公式也可以表达为d ≡e-1 mod f(n)
这
里要解释一下,≡是数论中表示同余的符号。公式中,≡符号的左边必须和符号右边同余,也就是两边模运算结果相同。显而易见,不管f(n)取什么值,符号右
边1 mod f(n)的结果都等于1;符号的左边d与e的乘积做模运算后的结果也必须等于1。这就需要计算出d的值,让这个同余等式能够成立。
(6)公钥KU=(e,n),私钥KR=(d,n)。
(7)加密时,先将明文变换成0至n-1的一个整数M。若明文较长,可先分割成适当的组,然后再进行交换。设密文为C,则加密过程为:
。
(8)解密过程为:
。
实例描述:
  在这篇科普小文章里,不可能对RSA算法的正确性作严格的数学证明,但我们可以通过一个简单的例子来理解RSA的工作原理。为了便于计算。在以下实例中只选取小数值的素数p,q,以及e,假设用户A需要将明文“key”通过RSA加密后传递给用户B,过程如下:
(1)设计公私密钥(e,n)和(d,n)。
令p=3,q=11,得出n=p×q=3×11=33;f(n)=(p-1)(q-1)=2×10=20;取e=3,(3与20互质)则e×d≡1 mod f(n),即3×d≡1 mod 20。
d怎样取值呢?可以用试算的办法来寻找。试算结果见下表:
  通过试算我们找到,当d=7时,e×d≡1 mod f(n)同余等式成立。因此,可令d=7。从而我们可以设计出一对公私密钥,加密密钥(公钥)为:KU =(e,n)=(3,33),解密密钥(私钥)为:KR =(d,n)=(7,33)。
(2)英文数字化。
  将明文信息数字化,并将每块两个数字分组。假定明文英文字母编码表为按字母顺序排列数值,即:
  则得到分组后的key的明文信息为:11,05,25。
(3)明文加密 
  用户加密密钥(3,33) 将数字化明文分组信息加密成密文。由C≡Me(mod n)得:
  因此,得到相应的密文信息为:11,31,16。
(4)密文解密。
  用户B收到密文,若将其解密,只需要计算
,即:
  用户B得到明文信息为:11,05,25。根据上面的编码表将其转换为英文,我们又得到了恢复后的原文“key”。 
   你看,它的原理就可以这么简单地解释!
   当然,实际运用要比这复杂得多,由于RSA算法的公钥私钥的长度(模长度)要到1024位甚至2048位才能保证安全,因此,p、q、e的选取、公钥私钥的生成,加密解密模指数运算都有一定的计算程序,需要仰仗计算机高速完成。
最后简单谈谈RSA的安全性
   首先,我们来探讨为什么RSA密码难于破解? 
 
 在RSA密码应用中,公钥KU是被公开的,即e和n的数值可以被第三方窃听者得到。破解RSA密码的问题就是从已知的e和n的数值(n等于pq),想法
求出d的数值,这样就可以得到私钥来破解密文。从上文中的公式:d ≡e-1 (mod((p-1)(q-1)))或de≡1
(mod((p-1)(q-1)))
我们可以看出。密码破解的实质问题是:从Pq的数值,去求出(p-1)和(q-1)。换句话说,只要求出p和q的值,我们就能求出d的值而得到私钥。
 
 当p和q是一个大素数的时候,从它们的积pq去分解因子p和q,这是一个公认的数学难题。比如当pq大到1024位时,迄今为止还没有人能够利用任何计
算工具去完成分解因子的任务。因此,RSA从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。
  然而,虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何。
 
 此外,RSA的缺点还有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600
 bits
以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。因此,使用
RSA只能加密少量数据,大量的数据加密还要靠对称密码算法。
rsa 数学推论的更多相关文章
- Lexicography(数学推论>>求按字典序排第k个排列)
		
Lexicography Time Limit:1000MS Memory Limit:131072KB 64bit IO Format:%lld & %llu Submit ...
 - poj1012.Joseph(数学推论)
		
Joseph Time Limit: 1 Sec Memory Limit: 64 MB Submit: 493 Solved: 311 Description The Joseph's prob ...
 - zhx's contest (矩阵快速幂 + 数学推论)
		
zhx's contest Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) To ...
 - HDU 4569 Special equations(数学推论)
		
题目 //想不出来,看了解题报告 /* 题意:给你一个最高幂为4的一元多项式,让你求出一个x使其结果模p*p为0. 题解:f(x)%(p*p)=0那么一定有f(x)%p=0,f(x)%p=0那么一定有 ...
 - 对 p 开 n 次方 (数学推论)
		
#include<stdio.h> #include<string.h> #include<algorithm> #include<math.h> us ...
 - 初探Stage3D(三) 深入研究透视投影矩阵
		
关于本文 本文主要讲解从数学的角度如何推导出Stage3D中用到的两个投影矩阵 perspectiveLH public function perspectiveLH(width:Number,hei ...
 - 2016 ACM/ICPC Asia Regional Dalian ICPC大连现场赛
		
讲道理我挺想去大连的…… 毕竟风景不错…… 而且这次能去北京也是靠大连网络赛这一场拉开的优势…… 一道补图最短路一道数学推论简直爽爆…… 当然 除了这一场 其他场都非常划水…… 上次看到别人的博客用这 ...
 - 对SVM的个人理解---浅显易懂
		
原文:http://blog.csdn.net/arthur503/article/details/19966891 之前以为SVM很强大很神秘,自己了解了之后发现原理并不难,不过,“大师的功力在于将 ...
 - NOIP前刷题记录
		
因为本蒻实在太蒻了...对于即将到来的NOIP2018ssfd,所以下决心要把自己近期做过的题目(衡量标准为洛谷蓝题难度或以上)整理一下,归归类,简单地写一下思路,就当作自己复习了吧qwq 本随笔持续 ...
 
随机推荐
- 移动元素时,translate要比margin好
			
比如 做全屏轮播时,父元素往往是被子元素撑起来的,那你设置父元素的margin时,往往会感染到子元素,如下图: 而用translate3d就不会出现这种效果:
 - C/C++ 笔试题一
			
摘自 网络上的 笔试题,据说是华为的,考察的内容还算全面,也很细致: 答案 疏略 检查了下,应该没有什么大问题,但是 还是那句话,尽信之不如无,所以还是要自己思考 1.static有什么用途?(请至少 ...
 - Android 发布Apk签名
			
1.签名的意义 为了保证每个应用程序开发商合法ID,防止部分开放商可能通过使用相同的Package Name来混淆替换已经安装的程序,我们需要对我们发布的APK文件进行唯一签名,保证我们每次发布的版本 ...
 - Laraver 框架资料
			
重定向: return redirect()->to('http://www.baidu.com'); 重定向到内部路由 return redirect()->route(‘name’); ...
 - win10如何在局域网中设置一台电脑的固定ip地址
			
在工作和生活中,经常要遇到远程访问一台电脑的情况,但是在局域网中如果不进行设置,通常一台电脑的ip是自动生成的,,没有固定,这就导致下次访问这个地址时,不能正常访问,下面就交大家如何在win10系统中 ...
 - 简述MVC模式
			
<!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="UTF-8& ...
 - Ambari client
			
在研究如何修改YARN的资源池的时候,发现了Hortwork在github上面开源了一个Ambari Client: https://github.com/apache/ambari/tree/tru ...
 - bzoj 2763 [JLOI2011]飞行路线——分层图
			
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2763 分层图两种方法的练习. 1.把图分成k+1层,本层去上面一层的边免费.但空间时间都不算 ...
 - 【转】 Pro Android学习笔记(九六):AsyncTask(5):横竖屏切换问题
			
目录(?)[-] 横竖屏切换的问题 WeakReference 文章转载只能用于非商业性质,且不能带有虚拟货币.积分.注册等附加条件.转载须注明出处:http://blog.csdn.net/flow ...
 - AngularJS:表格
			
ylbtech-AngularJS:表格 1.返回顶部 1. AngularJS 表格 ng-repeat 指令可以完美的显示表格. 在表格中显示数据 使用 angular 显示表格是非常简单的: A ...