【bzoj1797】[Ahoi2009]Mincut 最小割 网络流最小割+Tarjan
题目描述
给定一张图,对于每一条边询问:(1)是否存在割断该边的s-t最小割 (2)是否所有s-t最小割都割断该边
输入
第一行有4个正整数,依次为N,M,s和t。第2行到第(M+1)行每行3个正 整数v,u,c表示v中转站到u中转站之间有单向道路相连,单向道路的起点是v, 终点是u,切断它的代价是c(1≤c≤100000)。 注意:两个中转站之间可能有多条道路直接相连。 同一行相邻两数之间可能有一个或多个空格。
输出
对每条单向边,按输入顺序,依次输出一行,包含两个非0即1的整数,分 别表示对问题一和问题二的回答(其中输出1表示是,输出0表示否)。 同一行相邻两数之间用一个空格隔开,每行开头和末尾没有多余空格。
样例输入
6 7 1 6
1 2 3
1 3 2
2 4 4
2 5 1
3 5 5
4 6 2
5 6 3
样例输出
1 0
1 0
0 0
1 0
0 0
1 0
1 0
题解
网络流最小割+Tarjan
(貌似是某结论题?)
跑网络流最小割,然后在残量网络上跑Tarjan,缩点。
对于一条边满流的边x->y:
如果x与y所属的SCC不同,则该边可能出现在最小割上;
如果x与s所属的SCC相同且y与t所属的SCC相同,则该边一定出现在最小割上。
具体证明可以参考 hzwer's blog (既然是结论题就懒得证结论了233)
#include <queue>
#include <cstdio>
#include <cstring>
#define N 4010
#define M 120010
using namespace std;
queue<int> q;
typedef long long ll;
int head[N] , to[M] , id[M] , next[M] , cnt = 1 , s , t , dis[N] , deep[N] , low[N] , tot , vis[N] , ins[N] , sta[N] , top , bl[N] , num , ans[M >> 1];
ll val[M];
inline void add(int x , int y , ll z , int i)
{
to[++cnt] = y , val[cnt] = z , id[cnt] = i , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , id[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
ll dinic(int x , ll low)
{
if(x == t) return low;
ll temp = low , k;
int i;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
void tarjan(int x)
{
int i;
deep[x] = low[x] = ++tot , vis[x] = ins[x] = 1 , sta[++top] = x;
for(i = head[x] ; i ; i = next[i])
{
if(val[i])
{
if(!vis[to[i]]) tarjan(to[i]) , low[x] = min(low[x] , low[to[i]]);
else if(ins[to[i]]) low[x] = min(low[x] , deep[to[i]]);
}
}
if(deep[x] == low[x])
{
int t;
num ++ ;
do
{
t = sta[top -- ];
bl[t] = num , ins[t] = 0;
}while(t != x);
}
}
int main()
{
int n , m , i , x , y;
ll z;
scanf("%d%d%d%d" , &n , &m , &s , &t);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d%lld" , &x , &y , &z) , add(x , y , z , i);
while(bfs()) dinic(s , 1ll << 62);
for(i = 1 ; i <= n ; i ++ )
if(!vis[i])
tarjan(i);
for(x = 1 ; x <= n ; x ++ )
for(i = head[x] ; i ; i = next[i])
if(id[i] && !val[i])
ans[id[i]] = (bl[x] != bl[to[i]]) + ((bl[x] == bl[s] && bl[to[i]] == bl[t]) << 1);
for(i = 1 ; i <= m ; i ++ ) printf("%d %d\n" , ans[i] & 1 , ans[i] >> 1);
return 0;
}
【bzoj1797】[Ahoi2009]Mincut 最小割 网络流最小割+Tarjan的更多相关文章
- bzoj1797: [Ahoi2009]Mincut 最小割(网络流,缩点)
传送门 首先肯定要跑一个最小割也就是最大流 然后我们把残量网络tarjan,用所有没有满流的边来缩点 一条边如果没有满流,那它就不可能被割了 一条边如果所属的两个强联通分量不同,它就可以被割 一条边如 ...
- bzoj1797: [Ahoi2009]Mincut 最小割
最大流+tarjan.然后因为原来那样写如果图不连通的话就会出错,WA了很久. jcvb: 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t] ...
- bzoj1797: [Ahoi2009]Mincut 最小割(最小割+强联通tarjan)
1797: [Ahoi2009]Mincut 最小割 题目:传送门 题解: 感觉是一道肥肠好的题目. 第二问其实比第一问简单? 用残余网络跑强联通,流量大于0才访问. 那么如果两个点所属的联通分量分别 ...
- BZOJ1797 [Ahoi2009]Mincut 最小割 【最小割唯一性判定】
题目 A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站,如果切断这条道路 ...
- 【最小割】【Dinic】【强联通分量缩点】bzoj1797 [Ahoi2009]Mincut 最小割
结论: 满足条件一:当一条边的起点和终点不在 残量网络的 一个强联通分量中.且满流. 满足条件二:当一条边的起点和终点分别在 S 和 T 的强联通分量中.且满流.. 网上题解很多的. #include ...
- BZOJ 1797: [Ahoi2009]Mincut 最小割( 网络流 )
先跑网络流, 然后在残余网络tarjan缩点. 考虑一条边(u,v): 当且仅当scc[u] != scc[v], (u,v)可能出现在最小割中...然而我并不会证明 当且仅当scc[u] = scc ...
- BZOJ 1797: [Ahoi2009]Mincut 最小割
1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2076 Solved: 885[Submit] ...
- 【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点
1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1685 Solved: 724[Submit] ...
- BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan
BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤ ...
随机推荐
- Java基础题:集合、String、性能、线程
转载自:Java基础题 https://yq.aliyun.com/articles/601786?utm_content=m_1000001149
- echarts实用小技巧,控制字符串长度,限定整数等
限定横坐标文本字符长度 xAxis : [ axisLabel:{ formatter: function (value) { var maxlength=6; if (value.length> ...
- idea添加源代码目录,编译代码出现时钟样式
项目结构需要有一个target目录,需要一个src目录,
- sort()的部分用法
#include <iostream> #include <cstdio> #include <algorithm>//sort要包含的头文件 #include & ...
- python2.X与python3.X爬虫常用的模块变化对应
python2 python3 import urllib2 import urllib.request,urllib.error import urllib.request,urllib.error ...
- MyBatis的笔记
1.#{}和${}的区别是什么? #{}是预编译处理,${}是字符串替换. #{}是sql的参数占位符,${}是Properties文件中的变量占位符,它可以用于标签属性值和sql内部,属于静态文本替 ...
- 20145202马超《JAVA》预备作业3
虚拟机的安装[http://www.cnblogs.com/tuolemi/p/5861062.html] Linux命令[http://www.cnblogs.com/tuolemi/p/58781 ...
- PHP.45-TP框架商城应用实例-后台20-权限管理-RBAC表构造与代码生成
权限管理 三张主表{p39_privilege(权限).p39_role(角色).p39_admin(管理)} 两张中间表{p39_role_pri(角色-权限).p39_admin_role(管理- ...
- 【WPF】创建基于模板的WPF控件(经典)
原文:[WPF]创建基于模板的WPF控件(经典) WPF可以创建两种控件,它们的名字也很容易让人混淆:用户控件(User Control)和定制控件(Customer Control),之所以如此命名 ...
- 1977: [BeiJing2010组队]次小生成树 Tree
1977: [BeiJing2010组队]次小生成树 Tree https://lydsy.com/JudgeOnline/problem.php?id=1977 题意: 求严格次小生成树,即边权和不 ...