下方是pandas中resample方法的定义,帮助文档http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling中有更加详细的解释。

    def resample(self, rule, how=None, axis=0, fill_method=None, closed=None,
label=None, convention='start', kind=None, loffset=None,
limit=None, base=0, on=None, level=None):
"""
Convenience method for frequency conversion and resampling of time
series. Object must have a datetime-like index (DatetimeIndex,
PeriodIndex, or TimedeltaIndex), or pass datetime-like values
to the on or level keyword.(数据重采样和频率转换,数据必须有时间类型的索引列) Parameters
----------
rule : string
the offset string or object representing target conversion(代表目标转换的偏移量)
axis : int, optional, default 0(操作的轴信息)
closed : {'right', 'left'}
Which side of bin interval is closed. The default is 'left'
for all frequency offsets except for 'M', 'A', 'Q', 'BM',
'BA', 'BQ', and 'W' which all have a default of 'right'.(哪一个方向的间隔是关闭的,)
label : {'right', 'left'}
Which bin edge label to label bucket with. The default is 'left'
for all frequency offsets except for 'M', 'A', 'Q', 'BM',
'BA', 'BQ', and 'W' which all have a default of 'right'.(区间的哪一个方向的边界标签保留)
convention : {'start', 'end', 's', 'e'}
For PeriodIndex only, controls whether to use the start or end of
`rule`
kind: {'timestamp', 'period'}, optional
Pass 'timestamp' to convert the resulting index to a
``DateTimeIndex`` or 'period' to convert it to a ``PeriodIndex``.
By default the input representation is retained.
loffset : timedelta
Adjust the resampled time labels
base : int, default 0
For frequencies that evenly subdivide 1 day, the "origin" of the
aggregated intervals. For example, for '5min' frequency, base could
range from 0 through 4. Defaults to 0
on : string, optional
For a DataFrame, column to use instead of index for resampling.
Column must be datetime-like. .. versionadded:: 0.19.0 level : string or int, optional
For a MultiIndex, level (name or number) to use for
resampling. Level must be datetime-like. .. versionadded:: 0.19.0 Returns
-------
Resampler object Notes
-----
See the `user guide
<http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling>`_
for more. To learn more about the offset strings, please see `this link
<http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. Examples
-------- Start by creating a series with 9 one minute timestamps.(新建频率为1min的时间序列) >>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 00:07:00 7
2000-01-01 00:08:00 8
Freq: T, dtype: int64 Downsample the series into 3 minute bins and sum the values
of the timestamps falling into a bin.(下采样为三分钟) >>> series.resample('3T').sum()
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
2000-01-01 00:06:00 21
Freq: 3T, dtype: int64 Downsample the series into 3 minute bins as above, but label each
bin using the right edge instead of the left. Please note that the
value in the bucket used as the label is not included in the bucket,
which it labels. For example, in the original series the
bucket ``2000-01-01 00:03:00`` contains the value 3, but the summed
value in the resampled bucket with the label ``2000-01-01 00:03:00``
does not include 3 (if it did, the summed value would be 6, not 3).
To include this value close the right side of the bin interval as
illustrated in the example below this one. >>> series.resample('3T', label='right').sum()(保留间隔的右侧标签,上一个结果是左侧标签)
2000-01-01 00:03:00 3
2000-01-01 00:06:00 12
2000-01-01 00:09:00 21
Freq: 3T, dtype: int64 Downsample the series into 3 minute bins as above, but close the right
side of the bin interval.(降采样为3分钟) >>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00 0
2000-01-01 00:03:00 6
2000-01-01 00:06:00 15
2000-01-01 00:09:00 15
Freq: 3T, dtype: int64 Upsample the series into 30 second bins.(生采样为30秒) >>> series.resample('30S').asfreq()[0:5] #select first 5 rows
2000-01-01 00:00:00 0.0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 1.0
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2.0
Freq: 30S, dtype: float64 Upsample the series into 30 second bins and fill the ``NaN``
values using the ``pad`` method.(向前0阶保持)
pad/ffill:用前一个非缺失值去填充该缺失值
backfill/bfill:用下一个非缺失值填充该缺失值
        >>> series.resample('30S').pad()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 0
2000-01-01 00:01:00 1
2000-01-01 00:01:30 1
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64 Upsample the series into 30 second bins and fill the
``NaN`` values using the ``bfill`` method.(向后0阶保持) >>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 1
2000-01-01 00:01:00 1
2000-01-01 00:01:30 2
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64 Pass a custom function via ``apply`` >>> def custom_resampler(array_like):
... return np.sum(array_like)+5 >>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00 8
2000-01-01 00:03:00 17
2000-01-01 00:06:00 26
Freq: 3T, dtype: int64 For a Series with a PeriodIndex, the keyword `convention` can be
used to control whether to use the start or end of `rule`. >>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01',
freq='A',
periods=2))
>>> s
2012 1
2013 2
Freq: A-DEC, dtype: int64 Resample by month using 'start' `convention`. Values are assigned to
the first month of the period. >>> s.resample('M', convention='start').asfreq().head()
2012-01 1.0
2012-02 NaN
2012-03 NaN
2012-04 NaN
2012-05 NaN
Freq: M, dtype: float64 Resample by month using 'end' `convention`. Values are assigned to
the last month of the period. >>> s.resample('M', convention='end').asfreq()
2012-12 1.0
2013-01 NaN
2013-02 NaN
2013-03 NaN
2013-04 NaN
2013-05 NaN
2013-06 NaN
2013-07 NaN
2013-08 NaN
2013-09 NaN
2013-10 NaN
2013-11 NaN
2013-12 2.0
Freq: M, dtype: float64 For DataFrame objects, the keyword ``on`` can be used to specify the
column instead of the index for resampling. >>> df = pd.DataFrame(data=9*[range(4)], columns=['a', 'b', 'c', 'd'])
>>> df['time'] = pd.date_range('1/1/2000', periods=9, freq='T')
>>> df.resample('3T', on='time').sum()
a b c d
time
2000-01-01 00:00:00 0 3 6 9
2000-01-01 00:03:00 0 3 6 9
2000-01-01 00:06:00 0 3 6 9 For a DataFrame with MultiIndex, the keyword ``level`` can be used to
specify on level the resampling needs to take place. >>> time = pd.date_range('1/1/2000', periods=5, freq='T')
>>> df2 = pd.DataFrame(data=10*[range(4)],
columns=['a', 'b', 'c', 'd'],
index=pd.MultiIndex.from_product([time, [1, 2]])
)
>>> df2.resample('3T', level=0).sum()
a b c d
2000-01-01 00:00:00 0 6 12 18
2000-01-01 00:03:00 0 4 8 12

Python数据分析(三)pandas resample 重采样的更多相关文章

  1. Python数据分析库pandas基本操作

    Python数据分析库pandas基本操作2017年02月20日 17:09:06 birdlove1987 阅读数:22631 标签: python 数据分析 pandas 更多 个人分类: Pyt ...

  2. Python数据分析之pandas基本数据结构:Series、DataFrame

    1引言 本文总结Pandas中两种常用的数据类型: (1)Series是一种一维的带标签数组对象. (2)DataFrame,二维,Series容器 2 Series数组 2.1 Series数组构成 ...

  3. Python 数据分析:Pandas 缺省值的判断

    Python 数据分析:Pandas 缺省值的判断 背景 我们从数据库中取出数据存入 Pandas None 转换成 NaN 或 NaT.但是,我们将 Pandas 数据写入数据库时又需要转换成 No ...

  4. Python数据分析之Pandas操作大全

    从头到尾都是手码的,文中的所有示例也都是在Pycharm中运行过的,自己整理笔记的最大好处在于可以按照自己的思路来构建矿建,等到将来在需要的时候能够以最快的速度看懂并应用=_= 注:为方便表述,本章设 ...

  5. Python数据分析之pandas学习

    Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...

  6. python数据分析之pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]

    1 引言 Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用.本文主要介绍Pandas的几种数据选取的方法. Pandas中,数据主要保存为Dataframe和Se ...

  7. Python数据分析之pandas

    Python中的pandas模块进行数据分析. 接下来pandas介绍中将学习到如下8块内容:1.数据结构简介:DataFrame和Series2.数据索引index3.利用pandas查询数据4.利 ...

  8. Python数据分析之pandas学习(基础操作)

    一.pandas数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Series类似于numpy中的一维数组,除了通吃一维数组可用的函数或方法,而且其 ...

  9. python数据分析三个重要方法之:numpy和pandas

    关于数据分析的组件之一:numpy ndarray的属性     4个必记参数:ndim:维度shape:形状(各维度的长度)size:总长度dtype:元素类型   一:np.array()产生n维 ...

随机推荐

  1. nignx 配置服务集群

    前言:这里只是简单介绍Nginx简单APP Server集群的搭建和设置发向代理. 后续有时间我会陆续加上Nginx的基础知识.三种负载均衡的策略设置.实现算法的介绍.(最后如果有测试环境,再模拟Ng ...

  2. Docker 运行MangoDB

    1.Docker运行MangoDB镜像 #创建挂载目录 cd /opt/docker_cfg mkdir -vp mongo/db #获取mongodb镜像 [root@localhost xiaog ...

  3. 搭建docker registry (htpasswd 认证)

    1,拉取docker registry 镜像 docker pull registry 2,创建证书存放目录 mkdir -p /home/registry 3,生成CA证书Edit your /et ...

  4. 为什么我用了$().height()还是对不齐呢?

    有一个这样的需求:有两个显示内容的框,要使他们高度一致,因为他们存放的内容多少和结构不一样,左边内容少,右边内容多.这就导致了右边会比左边高,解决方法就是超出部分用滚轮显示,那这时就先要调整右边的高度 ...

  5. maven-生命周期与插件

    Maven的生命周期是抽象的,具体的操作由插件实现,类似于java的模板设计模式. 1.生命周期 认识生命周期 maven有clean.default.site三种生命周期,每种生命周期都包含一些阶段 ...

  6. zookeeper相关知识与集群搭建

    Zookeeper Zookeeper相关概念 Zookeeper概述 Zookeeper是一个分布式协调服务的开源框架,主要用来解决分布式集群中应用系统的一致性问题. Zookeeper本质上是一个 ...

  7. 神级编辑器 sublime text 和 神级插件 emmet

    h1{foo}和a[href=#] 生成如下代码 <h1>foo</h1>  <a href="#"></a> 嵌套的使用 > ...

  8. 通过SVI实现VLAN间通信

    两个不同网段的计算机与三层交换机直连,通过SVI实现VLAN间通信vlan 1 //几个不同网段就创建几个VLANvlan 2 int f0/1 //划分VLANswitchport mode acc ...

  9. Educational Codeforces Round 47 (Rated for Div. 2) :B. Minimum Ternary String

    题目链接:http://codeforces.com/contest/1009/problem/B 解题心得: 题意就是给你一个只包含012三个字符的字符串,位置并且逻辑相邻的字符可以相互交换位置,就 ...

  10. RelativeSource设定绑定方向

    <Window x:Class="Yingbao.Chapter2.RelativeEx.AppWin" xmlns="http://schemas.microso ...