[BZOJ4006][JLOI2015]管道连接 状压dp+斯坦纳树
4006: [JLOI2015]管道连接
Time Limit: 30 Sec Memory Limit: 128 MB
Submit: 1020 Solved: 552
[Submit][Status][Discuss]
Description
小铭铭最近进入了某情报部门,该部门正在被如何建立安全的通道连接困扰。
Input
第一行包含三个整数 n;m;p,表示情报站的数量,可以建立的通道数量和重要情报站的数
Output
输出一行一个整数,表示任意相同频道的情报站之间都建立通道连接所花费的最少资源总量。
Sample Input
1 2 3
1 3 2
1 5 1
2 4 2
2 5 1
3 4 3
3 5 1
4 5 1
1 1
1 2
2 3
2 4
Sample Output
HINT
选择 (1; 5); (3; 5); (2; 5); (4; 5) 这 4 对情报站连接。
Source
斯坦纳树
f[i][state]表示以i为根,指定集合中的点的连通状态为state的生成树的最小总权值。
f[i][state]=min{f[i][subset1]+f[i][subset2] }
f[i][state]=min{ f[i][state],f[j][state]+e[i][j] }
第二个转移很像最短路,可以用spfa,dj转移。
最后由于是求斯坦纳森林,所以再加一个dp。
g[state]表示森林包含state的最小费用。
枚举子集
g[i]=min(g[i],g[j]+g[i-j])
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN=;
const int MAXM=;
const int MAXS=;
int read() {
int x=,f=;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-;
for(;isdigit(ch);ch=getchar()) x=x*+ch-'';
return x*f;
}
struct data {
int to,next,v;
}e[MAXM];
int head[MAXN],cnt;
void add(int u,int v,int val) {e[cnt].next=head[u];e[cnt].to=v;e[cnt].v=val;head[u]=cnt++;}
int n,m,p;
int f[MAXN][MAXS],g[MAXS];
int col[MAXN][MAXN],sum,state[MAXN];
int bit[MAXN];
int q[MAXM];
bool vis[MAXN]; void spfa(int s) {
int h=,t=;
for(int i=;i<=n;i++) if(f[i][s]!=f[][]) q[t++]=i,vis[i]=;
while(h!=t) {
int now=q[h++];if(h==MAXN-) h=;
for(int i=head[now];i>=;i=e[i].next) {
int to=e[i].to;
if(f[to][s]>f[now][s]+e[i].v) {
f[to][s]=f[now][s]+e[i].v;
if(!vis[to]){vis[to]=;q[t++]=to;if(t==MAXN-) t=;}
}
}
vis[now]=;
}
}
bool check(int s){
for(int i=;i<=sum;i++) {
if(state[i]==) continue;
if(((state[i]&s)!=)&&((s&state[i])!=state[i])) return false;
}
return true;
}
int main() {
memset(head,-,sizeof(head));
n=read(),m=read(),p=read();
for(int i=;i<=m;i++) {
int u=read(),v=read(),w=read();
add(u,v,w);add(v,u,w);
}
memset(f,,sizeof(f));
for(int i=;i<=p;i++) {
int x=read(),y=read();
if(col[x][]) sum++;
col[x][++col[x][]]=y;
bit[y]=<<(i-);
f[y][bit[y]]=;
}
for(int i=;i<=(<<p)-;i++) {
for(int j=;j<=n;j++) {
for(int k=i;k;k=(k-)&i) {
if(f[j][k]==f[][]||f[j][i-k]==f[][]) continue;
f[j][i]=min(f[j][i],f[j][k]+f[j][i-k]);
}
}
spfa(i);
}
for(int i=;i<=sum;i++)
for(int j=;j<=col[i][];j++) state[i]|=bit[col[i][j]];
memset(g,,sizeof(g));
for(int i=;i<=(<<p)-;i++)
for(int j=;j<=n;j++) g[i]=min(g[i],f[j][i]);
for(int i=;i<=(<<p)-;i++) {
if(!check(i)) continue;
for(int j=i;j;j=(j-)&i) {
if(!check(j)||g[j]==g[]||g[i-j]==g[]) continue;
g[i]=min(g[i],g[j]+g[i-j]);
}
}
printf("%d",g[(<<p)-]);
}
[BZOJ4006][JLOI2015]管道连接 状压dp+斯坦纳树的更多相关文章
- luogu4294 [WC2008]游览计划(状压DP/斯坦纳树)
link 题目大意:给定一个网格图,有些点是关键点,选择格点有代价,求把所有关键点联通的最小代价 斯坦纳树模板题 斯坦纳树问题:给定一个图结构,有一些点是关键点,求把这些关键点联通的最小代价e 斯坦纳 ...
- 【BZOJ4006】管道连接(动态规划,斯坦纳树)
题面 BZOJ 洛谷 题解 和这题区别不是很大吧. 基本上拿过来改一下就做完了. #include<iostream> #include<cstdio> #include< ...
- [bzoj4006][JLOI2015]管道连接_斯坦纳树_状压dp
管道连接 bzoj-4006 JLOI-2015 题目大意:给定一张$n$个节点$m$条边的带边权无向图.并且给定$p$个重要节点,每个重要节点都有一个颜色.求一个边权和最小的边集使得颜色相同的重要节 ...
- BZOJ4006: [JLOI2015]管道连接(斯坦纳树,状压DP)
Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1171 Solved: 639[Submit][Status][Discuss] Descripti ...
- BZOJ4006 JLOI2015 管道连接(斯坦纳树生成森林)
4006: [JLOI2015]管道连接 Time Limit: 30 Sec Memory Limit: 128 MB Description 小铭铭最近进入了某情报部门,该部门正在被如何建立安全的 ...
- BZOJ4006 [JLOI2015]管道连接
裸的状压DP 令$f_S$表示包含颜色集合S的最小斯坦纳生成森林的值,于是有: $$f_S=\min\{f_S,f_s+f_{S-s}|s\subset S\}$$ 然后嘛...还是裸的斯坦纳树搞搞. ...
- 2018.10.17 NOIP模拟 管道(状压dp)
传送门 状压dp好题. 怎么今天道道题都有点东西啊 对于今天题目神仙出题人先膜为上策:%%%%DzYoAk_UoI%%%% 设f[i][j]f[i][j]f[i][j]表示选取点的状态集合为iii,当 ...
- 动态规划:状压DP-斯坦纳树
最小生成树是最小斯坦纳树的一种特殊情况 最小生成树是在给定的点集和边中寻求最短网络使所有点连通 而最小斯坦纳树允许在给定点外增加额外的点,使生成的最短网络开销最小 BZOJ2595 题意是给定一个棋盘 ...
- 【状压dp】Trie 树 @中山纪念中学20170304
目录 Trie 树 PROBLEM 题目描述 输入 输出 样例输入 样例输出 SOLUTION CODE Trie 树 PROBLEM 题目描述 字母(Trie)树是一个表示一个字符串集合中所有字符串 ...
随机推荐
- CodeForces Round #521 (Div.3) D. Cutting Out
http://codeforces.com/contest/1077/problem/D You are given an array ss consisting of nn integers. Yo ...
- 【SQLAlchemy】SQLAlchemy技术文档(中文版)(中)
10.建立联系(外键) 是时候考虑怎样映射和查询一个和Users表关联的第二张表了.假设我们系统的用户可以存储任意数量的email地址.我们需要定义一个新表Address与User相关联. from ...
- python数据绘图常用方法总结
挖坑,以后还会更新吧 做数学建模画图使用了matplotlib和numpy,这里简单总结一下常用的用法 一.数据拟合 1.np.polyfit(x, y, n) 使用n次多项式去拟合x,y散点图,返回 ...
- 【题解】IOI2005River 河流
一节语文课想出来的玩意儿,调了几个小时……可见细心&好的代码习惯是有多么的重要 (:へ:) 不过,大概竞赛最令人开心的就是能够一点一点的感受到自己的进步吧,一天比一天能够自己想出更多的题,A题 ...
- [ZJOI2005]沼泽鳄鱼 矩阵乘法
---题面--- 题解: 乍一看还是挺懵逼的.和HH去散步很像,思路也是类似的. 复制一段我在HH去散步的题解里面写的一段话吧: 考虑f[i][j]表示i和j是否右边相连,有为1,否则为0,那么f同时 ...
- Intellij Idea debug 远程部署的的tomcat项目
web项目部署到tomcat上之后,有时需要打断点单步调试,如果用的是Intellij idea,可以通过如下方法实现: 开启debug端口,启动tomcat 以tomcat7.0.75为例,打开bi ...
- yaf的安装
http://kenby.iteye.com/blog/1979899 yaf源码分析学习网站 # wget https://github.com/laruence/php-yaf/archive/m ...
- Linux下rsync 安装与配置
1.什么是rsync Rsync(remote synchronize)是一个远程数据同步工具,可通过LAN/WAN快速同步多台主机间的文件.Rsync使用所谓的“Rsync算法”来使本地和远 程两个 ...
- html中音频和视频
HTML5音频中的新元素标签 src:音频文件路径. autobuffer:设置是否在页面加载时自动缓冲音频. autoplay:设置音频是否自动播放. loop:设置音频是否要循环播放. contr ...
- 前端部署: nginx配置
前提:nginx 已安装 简介:nginx(engine x) 是一个高性能的HTTP和反向代理服务,也是一个IMAP/POP3/SMTP服务.Nginx是由伊戈尔·赛索耶夫为俄罗斯访问量第二的Ram ...