[HihoCoder1413]Rikka with String
题意
给你一个串,问你把每个位置的字符替换成#后串中有多少本质不同的子串。
\(n\le 3*10^5\)
sol
首先可以计算出原串里面有多少本质不同的子串。显然就是\(\sum_{i=1}^{tot}len_i-len_{fa_i}\)。
然后考虑把\(i\)位置替换成了#,那么你从\(1..i\)中任选左端点,\(i..n\)中任选右端点,这样的子串一定会是本质不同的。(一定含有字符#,满足长度不同或#的出现位置不同)
所以对于位置\(i\),答案先加上\(i*(n-i+1)\)。
然后也可以再给答案加上原有的本质不同的子串数目,这样我们就只需要求出:把\(i\)位置改成#后有多少本质不同的子串不再出现了(被砍断)。
考虑一个\(SAM\)中的状态\(i\),设其最大长度\(len_i\),\(right\)集合中的最小最大元素分别为\(l_i,r_i\)。
对于区间\([r_i-len_i+1,\min(r_i-len_{fa_i},l_i)]\)(如果合法的话),我们会给这个区间加上一个首项是\(1\)公差也是\(1\)的等差数列。
因为这个状态\(i\)本身是表示了\(len_i-len_{fa_i}+1\)个连续长度的子串,所以在这个区间内每向右移动一下就会有一个子串被砍断,因此是一个公差为\(1\)的等差数列。
对于区间\([min(r_i-len_{fa_i},l_i)+1,l_i]\)(如果合法的话),一旦#出现在这个区间里那么\(i\)这个状态表示的所有长度大于等于一定值的子串就都会被砍断。所以给这个区间集体加上前一个区间的长度,即\(\min(r_i-len_{fa_i},l_i)-(r_i-len_i+1)+1\)。
等差数列用二阶差分维护一下就可以了,注意原一阶差分(第二种情况就是一个一阶差分)对应的二阶差分。所以构出\(SAM\)后的复杂度可以做到线性。
code
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 6e5+5;
int n,last=1,tot=1,tr[N][26],fa[N],len[N],l[N],r[N],t[N],a[N];
char s[N];long long sum,ans[N];
void extend(int c)
{
int v=last,u=++tot;last=u;
len[u]=len[v]+1;
while (v&&!tr[v][c]) tr[v][c]=u,v=fa[v];
if (!v) fa[u]=1;
else{
int x=tr[v][c];
if (len[x]==len[v]+1) fa[u]=x;
else{
int y=++tot;
memcpy(tr[y],tr[x],sizeof(tr[y]));
fa[y]=fa[x];fa[x]=fa[u]=y;len[y]=len[v]+1;
while (v&&tr[v][c]==x) tr[v][c]=y,v=fa[v];
}
}
}
int main()
{
scanf("%d",&n);scanf("%s",s+1);
memset(l,63,sizeof(l));
for (int i=1;i<=n;++i) extend(s[i]-'a'),l[last]=r[last]=i;
for (int i=1;i<=tot;++i) ++t[len[i]];
for (int i=1;i<=tot;++i) t[i]+=t[i-1];
for (int i=1;i<=tot;++i) a[t[len[i]]--]=i;
for (int i=tot;i;--i)
{
l[fa[a[i]]]=min(l[fa[a[i]]],l[a[i]]);
r[fa[a[i]]]=max(r[fa[a[i]]],r[a[i]]);
sum+=len[i]-len[fa[i]];
}
for (int i=2;i<=tot;++i)
{
int L=r[i]-len[i]+1,R=min(r[i]-len[fa[i]],l[i]),Len=R-L+1;
if (L<=R) ans[L]+=1,ans[R+1]-=Len+1,ans[R+2]+=Len;
L=R+1;R=l[i];
if (L<=R) ans[L]+=Len,ans[L+1]-=Len,ans[R+1]-=Len,ans[R+2]+=Len;
}
for (int i=1;i<=n;++i) ans[i]+=ans[i-1];
for (int i=1;i<=n;++i) ans[i]+=ans[i-1];
for (int i=1;i<=n;++i) printf("%lld ",1ll*i*(n-i+1)+sum-ans[i]);
puts("");return 0;
}
[HihoCoder1413]Rikka with String的更多相关文章
- 「hihocoder1413 Rikka with String」
题目 哈哈哈哈哈哈哈哈哈哈我还没自闭 好像前后调了两天了 哈哈哈哈哈哈哈哈哈哈我还没自闭 这道题就是给定一个小写字母串,回答分别把每个位置上的字符替换为\(#\)后的本质不同的子串数 首先就是跨过这个 ...
- 【Hihocoder1413】Rikka with String(后缀自动机)
[Hihocoder1413]Rikka with String(后缀自动机) 题面 Hihocoder 给定一个小写字母串,回答分别把每个位置上的字符替换为'#'后的本质不同的子串数. 题解 首先横 ...
- hdu.5202.Rikka with string(贪心)
Rikka with string Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- HDU 6086 Rikka with String
Rikka with String http://acm.hdu.edu.cn/showproblem.php?pid=6086 题意: 求一个长度为2L的,包含所给定的n的串,并且满足非对称. 分析 ...
- 2017 多校5 Rikka with String
2017 多校5 Rikka with String(ac自动机+dp) 题意: Yuta has \(n\) \(01\) strings \(s_i\), and he wants to know ...
- HDU 6086 Rikka with String AC自动机 + DP
Rikka with String Problem Description As we know, Rikka is poor at math. Yuta is worrying about this ...
- hdu 6086 -- Rikka with String(AC自动机 + 状压DP)
题目链接 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, s ...
- ACM学习历程——HDU5202 Rikka with string(dfs,回文字符串)
Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...
- hdoj - 5202 Rikka with string (BestCoder Round #37 ($))
http://acm.hdu.edu.cn/showproblem.php?pid=5202 字符串处理的题,要细心. 给定一个只包含小写字母和问号的字符串,让我们还原出本来的字符串,把问号替换成任意 ...
随机推荐
- hadoop linux 杂记
切换到root su 修改sudo sudo + 命令 --> root权限 + 命令 su root vim /etc/sudoers ...
- Linux系统通过console口连接交换机
一.安装minicomUbuntu安装:sudo apt-get install minicom.centos安装:yum install minicom二.配置minicomUbuntu输入:sud ...
- list列表、tuple元组、range常用方法总结
list 列表(数组),是可迭代对象,列表是可变的所以列表的方法都是在列表本身更改的.里面看可以放各种数据类型的数据,可存储大量数据 连接列表可以使用 + 或 extend() a = [1, 3, ...
- python之路:进击的小白
1.hello world print("hello world") 2.变量定义的规则 变量名只能是 字母.数字或下划线的任意组合 变量名的第一个字符不能是数字 以下关键字不能声 ...
- Java底层代码实现多文件读取和写入
需求: "E:/data/"目录下有四个文件夹,如下: 每个文件夹下有几个.csv文件,如下: 将每个文件夹下的.csv文件合并成一个以该文件夹命名的.csv文件. 做法: 找到& ...
- Linux软件包管理 RMP包
RPM 包的安装虽然很方便和快捷,但是依赖性实在是很麻烦,尤其是库文件依赖,还要去 rpmfind 网站査找库文件到底属于哪个 RPM 包,从而导致 RPM 包的安装非常烦琐.那么,有没有可以自动解决 ...
- python的对象类型-----列表&元组&字典
列表: #定义列表 l=[1,'a',[3,4]] #l=list([1,'a',[3,4]]) #取值 print(l[0]) print(l[2][0]) l=[1,2,[['a','b'],'c ...
- shell的符号总结
1.命令替换符:先执行符号内的命令 反引号``:旧格式 $():新格式 2.字符串界定符: 单引号:保持引号内 的字符的字面值. 双引号:有些情况特殊. $echo '`date`' #不会执行`da ...
- ResourceLoader笔记
Ant路径匹配 Ant路径通配符支持“?”.“*”.“**”,注意通配符匹配不包括目录分隔符“/”: “?”:匹配一个字符,如“config?.xml”将匹配“config1.xml”: “*”:匹配 ...
- MySQL数据库基本操作(三)
MySQL补充: mysql是关系型数据库,关系数据库,是建立在关系模型基础上的数据库,现实世界中的各种实体,以及实体之间的各种联系,均用关系模型(table)来表示.#关系模型就是指二维表格模型,因 ...