2120: 数颜色

Time Limit: 6 Sec  Memory Limit: 259 MB

Submit: 6579  Solved: 2625

[Submit][Status][Discuss]

Description

墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问。墨墨会像你发布如下指令: 1、 Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔。 2、 R P Col 把第P支画笔替换为颜色Col。为了满足墨墨的要求,你知道你需要干什么了吗?

Input

第1行两个整数N,M,分别代表初始画笔的数量以及墨墨会做的事情的个数。第2行N个整数,分别代表初始画笔排中第i支画笔的颜色。第3行到第2+M行,每行分别代表墨墨会做的一件事情,格式见题干部分。

Output

对于每一个Query的询问,你需要在对应的行中给出一个数字,代表第L支画笔到第R支画笔中共有几种不同颜色的画笔。

Sample Input

6 5

1 2 3 4 5 5

Q 1 4

Q 2 6

R 1 2

Q 1 4

Q 2 6

Sample Output

4

4

3

4

HINT

对于100%的数据,N≤10000,M≤10000,修改操作不多于1000次,所有的输入数据中出现的所有整数均大于等于1且不超过10^6。

2016.3.2新加数据两组by Nano_Ape

第一次用带修改的莫队

实际就是记录下所有的修改,对于每个询问记录下该询问属于修改了几次时的询问

当到达一个询问时,若当前修改次数不符,就转移修改至当前询问所在修改

为了优化时间,我们按①块②右端点③修改次数   排序

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 10005,maxm = 1000005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int co[maxn],N,M,T,nq = 0,nt = 0,ans[maxn],tot[maxm];
struct Que{int l,r,tim,b,id;}Q[maxn];
struct Cha{int pos,from,to;}C[maxn];
inline bool operator <(const Que& a,const Que& b){
if (a.b != b.b) return a.b < b.b;
else if (a.r != b.r) return a.r < b.r;
return a.tim < b.tim;
}
void solve(){
int t = nt,L = 0,R = 0,cnt = 0;
for (int i = 1; i <= nq; i++){
while (t > Q[i].tim){
if (C[t].pos >= L && C[t].pos <= R){
if (!(--tot[C[t].to])) cnt--;
if (!tot[C[t].from]++) cnt++;
}
co[C[t].pos] = C[t].from; t--;
}
while (t < Q[i].tim){
t++;
if (C[t].pos >= L && C[t].pos <= R){
if (!(--tot[C[t].from])) cnt--;
if (!tot[C[t].to]++) cnt++;
}
co[C[t].pos] = C[t].to;
}
while (L < Q[i].l){if (!(--tot[co[L++]])) cnt--;}
while (L > Q[i].l){if (!tot[co[--L]]++) cnt++;}
while (R < Q[i].r){if (!tot[co[++R]]++) cnt++;}
while (R > Q[i].r){if (!(--tot[co[R--]])) cnt--;}
ans[Q[i].id] = cnt;
}
}
int main(){
N = RD(); M = RD(); T = (int)sqrt(N); char cmd;
REP(i,N) co[i] = RD();
REP(i,M){
cmd = getchar(); while (cmd != 'Q' && cmd != 'R') cmd = getchar();
if (cmd == 'Q') Q[++nq].l = RD(),Q[nq].r = RD(),Q[nq].tim = nt,Q[nq].b = Q[nq].l / T,Q[nq].id = nq;
else C[++nt].pos = RD(),C[nt].from = co[C[nt].pos],co[C[nt].pos] = C[nt].to = RD();
}
sort(Q + 1,Q + 1 + nq);
solve();
REP(i,nq) printf("%d\n",ans[i]);
return 0;
}

BZOJ2120 数颜色 【带修改莫队】的更多相关文章

  1. BZOJ2120数颜色(带修改莫队)

    莫队算法是一种数据结构的根号复杂度替代品,主要应用在询问[l,r]到询问[l+1,r]和[l,r+1]这两个插入和删除操作复杂度都较低的情况下.具体思想是:如果把一个询问[l,r]看做平面上的点(l, ...

  2. [国家集训队][bzoj2120] 数颜色 [带修改莫队]

    题面: 传送门 思路: 这道题和SDOI2009的HH的项链很像,只是多了一个修改 模板套上去呀 莫队学习请戳这里:莫队 Code: #include<iostream> #include ...

  3. BZOJ2120/洛谷P1903 [国家集训队] 数颜色 [带修改莫队]

    BZOJ传送门:洛谷传送门 数颜色 题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R ...

  4. bzoj 2120 数颜色 带修改莫队

    带修改莫队,每次查询前调整修改 #include<cstdio> #include<iostream> #include<cstring> #include< ...

  5. bzoj2120 数颜色——带修莫队

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2120 带修改的莫队: 用结构体存下修改和询问,排好序保证时间后就全局移动修改即可: 参考了T ...

  6. P1903 [国家集训队]数颜色 (带修改莫队)

    题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔. 2 ...

  7. BZOJ2120 数颜色 —— 待修改莫队

    题目链接:https://vjudge.net/problem/HYSBZ-2120 2120: 数颜色 Time Limit: 6 Sec  Memory Limit: 259 MBSubmit:  ...

  8. P1903 [国家集训队]数颜色 带修改莫队板子

    大概就是要多加一维time 然后按照(l的块,r的块,time)为关键字排序 转移区间修改还是按照莫队的方式(每个修改要记修改前后的状态) 然后玄学dalao告诉窝块大小设为\(O(n^{\frac{ ...

  9. COGS.1901.[模板][国家集训队2011]数颜色(带修改莫队)

    题目链接 COGS BZOJ2120 洛谷P1903 /* Add和Subd函数中的vis不能直接设为=1或=0 比如 l=1,r=0 -> l=3,r=5 时,[1,5]的vis标记全都是1 ...

  10. bzoj2120: 数颜色 带修莫队

    墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会像你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔. 2. R P ...

随机推荐

  1. php GD 圆图 -处理成圆图片

    <?php /** * 处理成圆图片,如果图片不是正方形就取最小边的圆半径,从左边开始剪切成圆形 * @param string $imgpath [description] * @return ...

  2. PHP icov转码报错解决方法,iconv(): Detected an illegal character in input string

    iconv(): Detected an illegal character in input string 错误解决方法 //转码 function iconv_gbk_to_uft8($strin ...

  3. semcms 网站漏洞挖掘过程与安全修复防范

    emcms是国内第一个开源外贸的网站管理系统,目前大多数的外贸网站都是用的semcms系统,该系统兼容许多浏览器,像IE,google,360极速浏览器都能非常好的兼容,官方semcms有php版本, ...

  4. TopCoder SRM 489 Div1 Lev3:AppleTree

    挺优秀的一道题,想出做法时有些惊艳. 题意: 数轴上有\(D\)个连续整数刻度,有\(N\)棵树要种在这些刻度上,其中第\(i\)棵与两旁(如果有的话)相邻的树至少要相距\(R_i\),问方法数. \ ...

  5. centos配置npm全局安装

    使用-g全局安装在服务器需要配置,下面看看配置方法 配置全局安装路径和缓存路径 cd /usr/local/nodejs mkdir node_global mkdir node_cache npm ...

  6. linux io 学习笔记(03)---共享内存,信号灯,消息队列

    system V IPC 1)消息队列 2)共享内存 3)信号灯(信号量集) 1.消息队列. ipcs -q 查看系统中使用消息队列的情况 ipcrm -q +msqid 删除消息队列 消息队列工作原 ...

  7. ORB-SLAM (四)tracking单目初始化

    单目初始化以及通过三角化恢复出地图点 单目的初始化有专门的初始化器,只有连续的两帧特征点均>100个才能够成功构建初始化器. ); 若成功获取满足特征点匹配条件的连续两帧,并行计算分解基础矩阵和 ...

  8. 搭建cvs服务器

    http://zhangjunhd.blog.51cto.com/113473/78595 http://www.cnblogs.com/lee/archive/2008/10/22/1317226. ...

  9. 「暑期训练」「Brute Force」 Multiplication Table (CFR256D2D)

    题意 给定一矩阵M" role="presentation">MM,Mij=ij" role="presentation">Mi ...

  10. npx 命令介绍

    这个是在 npmv5.2.0引入的一条命令(查看),引入这个命令的目的是为了提升开发者使用包内提供的命令行工具的体验. 为什么引入这个命令 举个例子,我们开发中要运行 parcel 命令来打包:par ...