[bzoj 2115]线性基+图论
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2115
给定一个带权无向图,要找出从1到n路径权值异或和最大的那一条的路径异或和。
考虑1到n的任意一条路径,都可以表示为1到n的一条路径,加上图上任意的一些环(1所在的那个连通块)。之所以可以这样,是因为图是连通的,而且无向的,走过去也可以走回来,所以假设当前走到了i号点,我想去走一些环,那么可以i->j->在环j上走一圈->j->i,这条路径上仅仅是异或上了一次环的权值(i->j和j->i的权值被抵消了)。
所以就把所有的环插入线性基就好了。最大值可以从高位到低位贪心来搞。
#include<bits/stdc++.h>
using namespace std; typedef long long ll; const int maxn=;
const int maxm=*; vector< pair<int,ll> > G[maxn];
ll a[maxn]; vector<ll> base;
void insert(ll x)
{
for (int i=;i<base.size();i++) x=min(x,x^base[i]);
if (x) base.push_back(x);
} void dfs(int u,int fa,ll now)
{
a[u]=now;
for (int i=;i<G[u].size();i++)
{
int v=G[u][i].first;
ll w=G[u][i].second;
if (a[v]==-) dfs(v,u,now^w);
else insert(now^a[v]^w);
}
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
memset(a,-,sizeof(a));
for (int i=;i<=m;i++)
{
int u,v;
ll w;
scanf("%d%d%lld",&u,&v,&w);
G[u].push_back(make_pair(v,w));
G[v].push_back(make_pair(u,w));
}
dfs(,,);
sort(base.begin(),base.end());
ll ans=a[n];
for (int i=base.size()-;i>=;i--) ans=max(ans,ans^base[i]);
printf("%lld",ans);
return ;
}
[bzoj 2115]线性基+图论的更多相关文章
- bzoj 2115 线性基
这种路径异或问题,可以转换为一条路径和若干个环的线性组合,然后就能用线性基搞了. 复习了一波线性基. #include<bits/stdc++.h> #define LL long lon ...
- 洛谷P4151 最大XOR和路径 [WC2011] 线性基+图论
正解:线性基+图论 解题报告: 传送门 首先可以思考一下有意义的路径会是什么样子,,,那就一定是一条链+一些环 挺显然的因为一条路径原路返回有没有意义辣?所以一定是走一条链+一些环(当然也可以麻油环, ...
- bzoj 2460 线性基
#include<bits/stdc++.h> #define ll long long #define LL long long #define int long long using ...
- [bzoj 2460]线性基+贪心+证明过程
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2460 网上很多题目都没说这个题目的证明,只说了贪心策略,我比较愚钝,在大神眼里的显然的策略 ...
- BZOJ - 2844 线性基
题意:求给定的数在原数组中的异或组合中的排名(非去重) 因为线性基中\(b[j]=1\)表示该位肯定存在,所以给定的数如果含有该位,由严格递增和集合枚举可得,排名必然加上\(2^j\)(不是完全对角就 ...
- [bzoj 2844]线性基+高斯消元
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2844 又用到线性基+高斯消元的套路题了,因为经过高斯消元以后的线性基有非常好的序关系,所以 ...
- 就是要第一个出场的albus 【BZOJ】 线性基
就是我代码里读入之后的那一部分. 1.(一下a[]为原数组 a'[]为线性基) 线性基 中的a'[i]其实 是 原来的a[]中的某个子集(2^n个子集中的某个) 异或出来的 可能会有其他的子集与它异 ...
- Codeforces 1299D - Around the World(线性基+图论+dp)
Codeforces 题目传送门 & 洛谷题目传送门 一道线性基的综合题 %%%%%% 首先注意到"非简单路径""异或和"等字眼,可以本能地想到线性基. ...
- BZOJ 3105 线性基 高斯消元
思路: 按照从大到小排个序 维护两个数组 一个是消元后的 另一个是 按照消元的位置排的 不断 维护从大到小 (呃具体见代码) //By SiriusRen #include <cstdio> ...
随机推荐
- 静态栈抽象数据类型stack实现
#include<stdio.h> #include<stdbool.h> #include<stdlib.h> #define MAX_STACK_SIZE 10 ...
- Linux 控制台
shell shell命令分为两种:分别是内部命令和外部命令. 内部命令:在安装的时候嵌入系统内核. 外部命令:以文件的形式存在. 可以使用type命令查看是内部命令还是外部命令. Linux中,默认 ...
- TensorFlow深层神经网络常用方法
深度学习所示深层神经网络的代名词,重要特性:多层.非线性. 若只通过线性变换,任意层的神经网络模型与单层神经网络模型的表达能力没有任何区别,这是线性模型的局限性.对于线性可分的问题中,线性模型可解决, ...
- 笔记-twisted-adbapi-scrapy
笔记-twisted-adbapi-scrapy-mysql 1. 异步插入mysql 在爬虫中需要insert到mysql,但有一个问题是在爬虫环境中commit的及时性与性能冲突. 一般 ...
- Hadoop学习(四) FileSystem Shell命令详解
FileSystem Shell中大多数命令都和unix命令相同,只是两者之间的解释不同,如果你对unix命令有基本的了解,那么对于FileSystem Shell的命令,你将会感到很亲切. appe ...
- 20145202马超 实验二《Java面向对象程序设计》实验报告
实验二 Java面向对象程序设计 实验内容 1.初步掌握单元测试和TDD 2.理解并掌握面向对象三要素:封装.继承.多态 3.初步掌握UML建模 4.熟悉S.O.L.I.D原则 5.了解设计模式 实验 ...
- 北京Uber优步司机奖励政策(3月25日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- Electron入门应用打包exe(windows)
最近在学习nodejs,得知Electron是通过将Chromium和Node.js合并到同一个运行时环境中,用HTML,CSS和JavaScript来构建跨平台桌面应用程序的一门技术.对于之前一直从 ...
- P1189 SEARCH(逃跑的拉尔夫)
P1189 SEARCH 题目描述 年轻的拉尔夫开玩笑地从一个小镇上偷走了一辆车,但他没想到的是那辆车属于警察局,并且车上装有用于发射车子移动路线的装置. 那个装置太旧了,以至于只能发射关于那辆车的移 ...
- 6.JAVA知识点归纳整理
一.jdk初识与HelloWord: 二.java基础: 2.1 标识符_关键字_数据类型 2.2 数据类型转换 2.3 程序编写格式 2.4 运算符 2.5 分支与for循环 2.6 while_b ...