[bzoj 2115]线性基+图论
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2115
给定一个带权无向图,要找出从1到n路径权值异或和最大的那一条的路径异或和。
考虑1到n的任意一条路径,都可以表示为1到n的一条路径,加上图上任意的一些环(1所在的那个连通块)。之所以可以这样,是因为图是连通的,而且无向的,走过去也可以走回来,所以假设当前走到了i号点,我想去走一些环,那么可以i->j->在环j上走一圈->j->i,这条路径上仅仅是异或上了一次环的权值(i->j和j->i的权值被抵消了)。
所以就把所有的环插入线性基就好了。最大值可以从高位到低位贪心来搞。
#include<bits/stdc++.h>
using namespace std; typedef long long ll; const int maxn=;
const int maxm=*; vector< pair<int,ll> > G[maxn];
ll a[maxn]; vector<ll> base;
void insert(ll x)
{
for (int i=;i<base.size();i++) x=min(x,x^base[i]);
if (x) base.push_back(x);
} void dfs(int u,int fa,ll now)
{
a[u]=now;
for (int i=;i<G[u].size();i++)
{
int v=G[u][i].first;
ll w=G[u][i].second;
if (a[v]==-) dfs(v,u,now^w);
else insert(now^a[v]^w);
}
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
memset(a,-,sizeof(a));
for (int i=;i<=m;i++)
{
int u,v;
ll w;
scanf("%d%d%lld",&u,&v,&w);
G[u].push_back(make_pair(v,w));
G[v].push_back(make_pair(u,w));
}
dfs(,,);
sort(base.begin(),base.end());
ll ans=a[n];
for (int i=base.size()-;i>=;i--) ans=max(ans,ans^base[i]);
printf("%lld",ans);
return ;
}
[bzoj 2115]线性基+图论的更多相关文章
- bzoj 2115 线性基
这种路径异或问题,可以转换为一条路径和若干个环的线性组合,然后就能用线性基搞了. 复习了一波线性基. #include<bits/stdc++.h> #define LL long lon ...
- 洛谷P4151 最大XOR和路径 [WC2011] 线性基+图论
正解:线性基+图论 解题报告: 传送门 首先可以思考一下有意义的路径会是什么样子,,,那就一定是一条链+一些环 挺显然的因为一条路径原路返回有没有意义辣?所以一定是走一条链+一些环(当然也可以麻油环, ...
- bzoj 2460 线性基
#include<bits/stdc++.h> #define ll long long #define LL long long #define int long long using ...
- [bzoj 2460]线性基+贪心+证明过程
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2460 网上很多题目都没说这个题目的证明,只说了贪心策略,我比较愚钝,在大神眼里的显然的策略 ...
- BZOJ - 2844 线性基
题意:求给定的数在原数组中的异或组合中的排名(非去重) 因为线性基中\(b[j]=1\)表示该位肯定存在,所以给定的数如果含有该位,由严格递增和集合枚举可得,排名必然加上\(2^j\)(不是完全对角就 ...
- [bzoj 2844]线性基+高斯消元
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2844 又用到线性基+高斯消元的套路题了,因为经过高斯消元以后的线性基有非常好的序关系,所以 ...
- 就是要第一个出场的albus 【BZOJ】 线性基
就是我代码里读入之后的那一部分. 1.(一下a[]为原数组 a'[]为线性基) 线性基 中的a'[i]其实 是 原来的a[]中的某个子集(2^n个子集中的某个) 异或出来的 可能会有其他的子集与它异 ...
- Codeforces 1299D - Around the World(线性基+图论+dp)
Codeforces 题目传送门 & 洛谷题目传送门 一道线性基的综合题 %%%%%% 首先注意到"非简单路径""异或和"等字眼,可以本能地想到线性基. ...
- BZOJ 3105 线性基 高斯消元
思路: 按照从大到小排个序 维护两个数组 一个是消元后的 另一个是 按照消元的位置排的 不断 维护从大到小 (呃具体见代码) //By SiriusRen #include <cstdio> ...
随机推荐
- POJ2553 汇点个数(强连通分量
The Bottom of a Graph Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 12070 Accepted: ...
- win10在此处打开命令cmd
Windows Registry Editor Version 5.00 [HKEY_CLASSES_ROOT\Directory\shell\OpenCmdHere] @="在此处打开命令 ...
- SAPの販売管理で、価格設定をするまでの関連カスタマイズ画面
この記事ではSAP SDで.価格を決めるまでに必要な設定画面について述べています. condition table (条件テーブル) 条件レコードのキー項目を定義したもの.3桁の数字で名前がついている ...
- Java——equals方法---18.10.18
一.equals方法定义 public boolean equals(Object obj)方法 //提供对象是否“相等”的逻辑 二.”equals“和“==”的区别 1.“==”比较的是两个变量本身 ...
- CSS3复选框动画
本示例实现了两种单选按钮动画效果,一种是移动,一种是滑块,以下是html布局以及css样式 html:这里使用了label标签的for属性,以此来绑定radio <div class=" ...
- Migrating from MapReduce 1 (MRv1) to MapReduce 2 (MRv2, YARN)...
This is a guide to migrating from Apache MapReduce 1 (MRv1) to the Next Generation MapReduce (MRv2 o ...
- ethtool speed HowTo : Change Speed and Duplex of Ethernet card in Linux
To change Speed and Duplex of an ethernet card, we can use ethtool - a Linux utility for Displaying ...
- linux下 su 与 su - 的区别和使用
Linux下su与su -命令的区别 在启动服务器ntpd服务时遇到一个问题 使用 su root 切换到root用户后,不可以使用service命令: 使用 su - 后,就可以使用servic ...
- CVPR2018: Generative Image Inpainting with Contextual Attention 论文翻译、解读
注:博主是大四学生,翻译水平可能比不上研究人员的水平,博主会尽自己的力量为大家翻译这篇论文.翻译结果仅供参考,提供思路,翻译不足的地方博主会标注出来,请大家参照原文,请大家多多关照. 转载请务必注明出 ...
- OpenCV中的按钮问题
在HighGUI中,没有显示提供任何形式的按钮.一般有两种方法替代: 1.用只有两个状态的滑动条来替代按钮.开关(switch)事实上就是只有两个状态的滑动条,这两个状态是on和off.然后通过回调函 ...