kaldi学习 - 一脚本流学习工具使用
kaldi中脚本东西比较多,一层嵌一层,不易阅读。
本文以yesno为例,直接使用kaldi编译的工具,书写简易训练步骤,方便学习kaldi工具的使用。
注意:转载请注明出处。
yesno训练
- 准备数据
- 在yesno/s5下新建文件夹:
mkdir easy,后续的操作将在easy文件夹中执行。 - 拷贝s5下
./path到easy文件夹中,./path的作用是能直接调用工具,不用添加工具所在路径,类似于设置环境变量。 - 本脚主要便于理解kaldi工具的使用,一些批处理和数据下载并没有做,需要运行一遍
yesno/s5/./run.sh生成训练所需输入。 - 到
s5/data/train下拷贝wav.scp到easy目录下作为训练输入,因为wav.scp是相对路径也需要拷贝waves_yesno/到easy下。 - 拷贝词典到目录下:拷贝
s5/input到easy目录下。
准备数据结束,可以写自己的脚本了。
- 在yesno/s5下新建文件夹:
先给出整体脚本如下:
#!/bin/bash
. ./path
# feature extraction:
# a series of light command [ compute-mfcc + copy-feats -> compute-cmvn-stats -> apply-cmvn -> add-deltas ]
# the data flow transition [ wav -> mfcc.ark,scp -> cmvn.ark,scp -> delta.ark ]
mkdir mfcc
compute-mfcc-feats --verbose=2 --config="../conf/mfcc.conf" scp,p:wav.scp ark:- | copy-feats --compress=true ark:- ark,scp:mfcc/mfcc.ark,mfcc/mfcc.scp
compute-cmvn-stats scp:mfcc/mfcc.scp ark:mfcc/cmvn.ark
apply-cmvn ark:mfcc/cmvn.ark scp:mfcc/mfcc.scp ark:- | add-deltas ark:- ark:mfcc/delta.ark
# prepare dict for lang:
# input data [ lexicon_nosil.txt lexicon.txt phones.txt ]
# output data [ lexicon.txt lexicon_words.txt nonsilence_phones.txt optional_silence.txt silence_phones.txt ]
mkdir -p lang/dict
cp input/lexicon_nosil.txt lang/dict/lexicon_words.txt
cp input/lexicon.txt lang/dict/lexicon.txt
cat input/phones.txt | grep -v SIL > lang/dict/nonsilence_phones.txt
echo "SIL" > lang/dict/silence_phones.txt
echo "SIL" > lang/dict/optional_silence.txt
echo "Dictionary preparation succeeded"
# generate [ topo ] for acoustic model
utils/gen_topo.pl 3 5 2:3 1 > lang/lang/topo
# from [lexicoin phone word] -> [L.fst word.txt] for [G.fst train.fst HCLG.fst]
utils/prepare_lang.sh --position-dependent-phones false lang/dict "<SIL>" lang/local lang/lang
# train monophic acoustic model
# 1.from [topo 39] -> 0.mdl tree
gmm-init-mono --train-feats=ark:mfcc/delta.ark lang/lang/topo 39 mono/0.mdl mono/tree
# 2.from [L.fst 0.mdl tree word.txt text] -> train.fst
# compile-train-graphs [options] <tree-in> <model-in> <lexicon-fst-in> <transcriptions-rspecifier> <graphs-wspecifier>
compile-train-graphs mono/tree mono/0.mdl lang/lang/L.fst 'ark:sym2int.pl -f 2- lang/lang/words.txt text|' ark:lang/lang/graphs.fsts
# 3.from [graphs.fst] equally align the train data -> [ euqal.ali ]
# align-equal-compiled <graphs-rspecifier> <features-rspecifier> <alignments-wspecifier>
align-equal-compiled ark:lang/lang/graphs.fsts ark:mfcc/delta.ark ark:mono/equal.ali
# 4.from [equal.ali delta.ark mdl] -> [ 0.acc ]
gmm-acc-stats-ali mono/0.mdl ark:mfcc/delta.ark ark:mono/equal.ali mono/0.acc
# 5.from [0.mdl 0.acc] -> [ 1.mdl ]
# parameter est:
gmm-est mono/0.mdl mono/0.acc mono/1.mdl
x=1
numliter=40
numgauss=11
while [ $x -lt $numliter ]; do
# 6.from [1.mdl graphs.fst] align the data by new model -> [ 1.ali ]
gmm-align-compiled --beam=6 --retry-beam=20 mono/$x.mdl ark:lang/lang/graphs.fsts ark:mfcc/delta.ark ark:mono/$x.ali
# 4.from [equal.ali delta.ark mdl] -> [ 0.acc ]
gmm-acc-stats-ali mono/$x.mdl ark:mfcc/delta.ark ark:mono/equal.ali mono/$x.acc
# 5.from [x.mdl x.acc] -> [ x+1.mdl ]
gmm-est --mix-up=$numgauss --power=0.25 mono/$x.mdl mono/$x.acc mono/$[$x+1].mdl
numgauss=$[$numgauss+25]
x=$[$x+1]
done
cp mono/$x.mdl mono/final.mdl
# Graph compilation
# from [input/task.arpabo word.txt] -> G.fst
arpa2fst --disambig-symbol=#0 --read-symbol-table=lang/lang/words.txt input/task.arpabo lang/lang/G.fst
fstisstochastic lang/lang/G.fst
# from [final.mdl G.fst L.fst tree] -> HLCG.fst
utils/mkgraph.sh lang/lang mono mono/graph
分块详解
首先进行特征提取:
#!/bin/bash
. ./path
# 特征提取: compute-mfcc-feats, copy-feats
# 输入为:wav.scp 输出为:mfcc.ark,mfcc.scp
compute-mfcc-feats --verbose=2 --config="../conf/mfcc.conf" scp,p:wav.scp ark:- | copy-feats --compress=true ark:- ark,scp:mfcc/mfcc.ark,mfcc/mfcc.scp
# 计算均方归一化矩阵:
# 输入为:mfcc.ark,mfcc.scp 输出为:mfcc/cmvn.ark,mfcc/cmvn.scp
compute-cmvn-stats scp:mfcc/mfcc.scp ark,scp:mfcc/cmvn.ark,mfcc/cmvn.scp
# 计算一阶二阶差分:
# 输入为:mfcc/cmvn.ark,mfcc/cmvn.scp 输出为:delta.ark
apply-cmvn scp:mfcc/cmvn.scp scp:mfcc/mfcc.scp ark:- | add-deltas ark:- ark:mfcc/delta.ark
然后,准备训练所需的词典,音素文件,词文件等。
yesno里准备好了,直接拷贝即可。
# prepare dict for lang:
# input data [ lexicon_nosil.txt lexicon.txt phones.txt ]
# output data [ lexicon.txt lexicon_words.txt nonsilence_phones.txt optional_silence.txt silence_phones.txt ]
mkdir -p lang/dict
cp input/lexicon_nosil.txt lang/dict/lexicon_words.txt
cp input/lexicon.txt lang/dict/lexicon.txt
cat input/phones.txt | grep -v SIL > lang/dict/nonsilence_phones.txt
echo "SIL" > lang/dict/silence_phones.txt
echo "SIL" > lang/dict/optional_silence.txt
echo "Dictionary preparation succeeded"
生成声学拓扑结构。
生成 L.fst word.txt用来生成G.fst train.fst HCLG.fst。其中utils/prepare_lang.sh所需全部输入为上一步生成的dict文件。
# generate [ topo ] for acoustic model
utils/gen_topo.pl 3 5 2:3 1 > lang/lang/topo
# from [lexicoin phone word] -> [L.fst word.txt] for [G.fst train.fst HCLG.fst]
utils/prepare_lang.sh --position-dependent-phones false lang/dict "<SIL>" lang/local lang/lang
训练单音素模型
- 流程如下 :
- 利用生成的声学拓扑初始化模型
- 生成训练图
- 初始化对齐
- 生成统计量
- 模型参数估计
- {重新对齐生,成统计量,模型参数估计}x10
- 生成并导出最终模型:
# train monophic acoustic model
# 1.from [topo 39] -> 0.mdl tree
gmm-init-mono --train-feats=ark:mfcc/delta.ark lang/lang/topo 39 mono/0.mdl mono/tree
# 2.from [L.fst 0.mdl tree word.txt text] -> train.fst
# compile-train-graphs [options] <tree-in> <model-in> <lexicon-fst-in> <transcriptions-rspecifier> <graphs-wspecifier>
compile-train-graphs mono/tree mono/0.mdl lang/lang/L.fst 'ark:sym2int.pl -f 2- lang/lang/words.txt text|' ark:lang/lang/graphs.fsts
# 3.from [graphs.fst] equally align the train data -> [ euqal.ali ]
# align-equal-compiled <graphs-rspecifier> <features-rspecifier> <alignments-wspecifier>
align-equal-compiled ark:lang/lang/graphs.fsts ark:mfcc/delta.ark ark:mono/equal.ali
# 4.from [equal.ali delta.ark mdl] -> [ 0.acc ]
gmm-acc-stats-ali mono/0.mdl ark:mfcc/delta.ark ark:mono/equal.ali mono/0.acc
# 5.from [0.mdl 0.acc] -> [ 1.mdl ]
# parameter est:
gmm-est mono/0.mdl mono/0.acc mono/1.mdl
x=1
numliter=40
numgauss=11
while [ $x -lt $numliter ]; do
# 6.from [1.mdl graphs.fst] align the data by new model -> [ 1.ali ]
gmm-align-compiled --beam=6 --retry-beam=20 mono/$x.mdl ark:lang/lang/graphs.fsts ark:mfcc/delta.ark ark:mono/$x.ali
# 4.from [equal.ali delta.ark mdl] -> [ 0.acc ]
gmm-acc-stats-ali mono/$x.mdl ark:mfcc/delta.ark ark:mono/equal.ali mono/$x.acc
# 5.from [x.mdl x.acc] -> [ x+1.mdl ]
gmm-est --mix-up=$numgauss --power=0.25 mono/$x.mdl mono/$x.acc mono/$[$x+1].mdl
numgauss=$[$numgauss+25]
x=$[$x+1]
done
cp mono/$x.mdl mono/final.mdl
最后合成语言模型:
# Graph compilation
# from [input/task.arpabo word.txt] -> G.fst
arpa2fst --disambig-symbol=#0 --read-symbol-table=lang/lang/words.txt input/task.arpabo lang/lang/G.fst
fstisstochastic lang/lang/G.fst
# from [final.mdl G.fst L.fst tree] -> HLCG.fst
utils/mkgraph.sh lang/lang mono mono/graph
运行结果:
建立解码脚本
解码指令较简单一个指令即可:
#Usage: gmm-latgen-faster [options] model-in (fst-in|fsts-rspecifier) features-rspecifier lattice-wspecifier [ words-wspecifier [alignments-wspecifier] ]
gmm-latgen-faster --max-active=7000 --beam=13 --lattice-beam=6 --acoustic-scale=0.083333 \
--allow-partial=true --word-symbol-table=lang/lang/words.txt mono/final.mdl \
mono/graph/HCLG.fst ark:mfcc/delta.ark "ark:|gzip -c > result/lat.gz"
可以得到识别结果不是很好,没关系,主要用这个例子来理解kaldi是怎么样使用工具的。
转载请注明出处:https://blog.csdn.net/chinatelecom08/article/details/81392399
kaldi学习 - 一脚本流学习工具使用的更多相关文章
- java学习之IO流(学习之旅,一)
个人在学习IO流的时候看到如下所示java 流类图结构的时候,我的感想是,这么多··处于蒙的状态. Java流类图结构 这么多,没有分类不好学,那我们就慢慢一口一口的吃,这样每天学习一点就好了,其实很 ...
- 学习 shell脚本之前的基础知识
转载自:http://www.92csz.com/study/linux/12.htm 学习 shell脚本之前的基础知识 日常的linux系统管理工作中必不可少的就是shell脚本,如果不会写sh ...
- Java IO流学习总结八:Commons IO 2.5-IOUtils
Java IO流学习总结八:Commons IO 2.5-IOUtils 转载请标明出处:http://blog.csdn.net/zhaoyanjun6/article/details/550519 ...
- Java IO流学习总结(1)
Java IO流学习总结 Java流操作有关的类或接口: Java流类图结构: 流的概念和作用 流是一组有顺序的,有起点和终点的字节集合,是对数据传输的总称或抽象.即数据在两设备间的传输称为流,流的本 ...
- Java IO流学习
Java IO流学习 Java流操作有关的类或接口: Java流类图结构: 流的概念和作用 流是一组有顺序的,有起点和终点的字节集合,是对数据传输的总称或抽象.即数据在两设备间的传输称为流,流的本质是 ...
- 学习shell脚本之前的基础知识
日常的linux系统管理工作中必不可少的就是shell脚本,如果不会写shell脚本,那么你就不算一个合格的管理员.目前很多单位在招聘linux系统管理员时,shell脚本的编写是必考的项目.有的单位 ...
- Shell脚本基础学习
Shell脚本基础学习 当你在类Unix机器上编程时, 或者参与大型项目如k8s等, 某些框架和软件的安装都是使用shell脚本写的. 学会基本的shell脚本使用, 让你走上人生巅峰, 才怪. 学会 ...
- 《零基础学习Python制作ArcGIS自定义工具》课程简介
Python for ArcGIS Python for ArcGIS是借助Python语言实现ArcGIS自动化行为的综合,它不止是如课程标题所述的“制作ArcGIS自定义工具”,还包括使用Pyth ...
- Auto.js无障碍免root脚本开发学习
Auto.js 简单入门 官方文档:https://hyb1996.github.io/AutoJs-Docs/#/ https://blog.csdn.net/QiHsMing/article/de ...
随机推荐
- PC Android IOS资料同步更新
在程序发布后,特别是IOS版本,想替换里边的内容,重新发布版本很是麻烦.我们就可以动态用AssetBundle更新内容. 如果是自定义二进制文件,先要改为“.Bytes”后缀的文件,Unity会把这个 ...
- 表达式过滤器 lowercase
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- GNS3的安装和配置
一.为什么安装GNS3 简单说来它是dynamips的一个图形前端,相比直接使用dynamips这样的虚拟软件要更容易上手和更具有可操作性.更重要的一点是很多Cisco实验在cisco packet ...
- 免安装版Tomcat9中间件的安装
[环境准备] OS版本:Windows10.64位 Tomcat版本:apache_tomcat9.0.7.zip免安装版 [彻底卸载已安装的Tomcat中间件] 01:由于是免安装版本,因此直接删除 ...
- NPOI追加内容到xlsx报错,用Epplus往excle xlsx追加数据
问题的现象就是,只要不修改xlsx,一直写入或者再次写入xlsx,追加内容都是不会有问题的.但是只要你修改了xlsx,用excle2010或者2007修改了xlsx的内容里面的列宽,或者行高,或者进行 ...
- [Git add . ] 遇到The file will have its original line endings in your working directory 解决办法
1.在新项目中使用[ git add . ]时出现: warning: LF will be replaced by CRLF in ...... The file will have its ori ...
- alias,unalias命令
alias unalias 命令 =================================================[root@sambo ~]# aliasalias cp='cp ...
- tp5 数据库信息导出到excel(带图片)
function excel_down(){ //导入谁就去查谁 $data=Db::name('order_xueyou')->select(); // 导出Exl // import(&qu ...
- Promise 的基础用法
Promise 的含义 Promise 是异步编程的一种解决方案,比传统的解决方案–回调函数和事件--更合理和更强大.它由社区最早提出和实现,ES6将其写进了语言标准,统一了语法,原生提供了Promi ...
- 微信小程序scroll-viwe遇到的问题
1.当使用scroll-view的时候里面不可以使用某些标签 2.当使用scroll-view的时候会出现,子元素中滑动的时候会出现滚动的情况,我遇到的是因为view设置了高度和行高,一旦设置了这个, ...