keras EfficientNet介绍,在ImageNet任务上涨点明显 | keras efficientnet introduction
本文首发于个人博客https://kezunlin.me/post/88fbc049/,欢迎阅读最新内容!
keras efficientnet introduction
Guide
About EfficientNet Models


compared with resnet50, EfficientNet-B4 improves the top-1 accuracy from 76.3% of ResNet-50 to 82.6% (+6.3%), under similar FLOPS constraint.
Using Pretrained EfficientNet Checkpoints

Keras Models Performance
- The top-k errors were obtained using Keras Applications with the TensorFlow backend on the 2012 ILSVRC ImageNet validation set and may slightly differ from the original ones.
The input size used was 224x224 for all models except NASNetLarge (331x331), InceptionV3 (299x299), InceptionResNetV2 (299x299), Xception (299x299),
EfficientNet-B0 (224x224), EfficientNet-B1 (240x240), EfficientNet-B2 (260x260), EfficientNet-B3 (300x300), EfficientNet-B4 (380x380), EfficientNet-B5 (456x456), EfficientNet-B6 (528x528), and EfficientNet-B7 (600x600).
notice
- Top-1: single center crop, top-1 error
- Top-5: single center crop, top-5 error
- 10-5: ten crops (1 center + 4 corners and those mirrored ones), top-5 error
- Size: rounded the number of parameters when
include_top=True - Stem: rounded the number of parameters when
include_top=False
| Top-1 | Top-5 | 10-5 | Size | Stem | References | |
|---|---|---|---|---|---|---|
| VGG16 | 28.732 | 9.950 | 8.834 | 138.4M | 14.7M | [paper] [tf-models] |
| VGG19 | 28.744 | 10.012 | 8.774 | 143.7M | 20.0M | [paper] [tf-models] |
| ResNet50 | 25.072 | 7.940 | 6.828 | 25.6M | 23.6M | [paper] [tf-models] [torch] [caffe] |
| ResNet101 | 23.580 | 7.214 | 6.092 | 44.7M | 42.7M | [paper] [tf-models] [torch] [caffe] |
| ResNet152 | 23.396 | 6.882 | 5.908 | 60.4M | 58.4M | [paper] [tf-models] [torch] [caffe] |
| ResNet50V2 | 24.040 | 6.966 | 5.896 | 25.6M | 23.6M | [paper] [tf-models] [torch] |
| ResNet101V2 | 22.766 | 6.184 | 5.158 | 44.7M | 42.6M | [paper] [tf-models] [torch] |
| ResNet152V2 | 21.968 | 5.838 | 4.900 | 60.4M | 58.3M | [paper] [tf-models] [torch] |
| ResNeXt50 | 22.260 | 6.190 | 5.410 | 25.1M | 23.0M | [paper] [torch] |
| ResNeXt101 | 21.270 | 5.706 | 4.842 | 44.3M | 42.3M | [paper] [torch] |
| InceptionV3 | 22.102 | 6.280 | 5.038 | 23.9M | 21.8M | [paper] [tf-models] |
| InceptionResNetV2 | 19.744 | 4.748 | 3.962 | 55.9M | 54.3M | [paper] [tf-models] |
| Xception | 20.994 | 5.548 | 4.738 | 22.9M | 20.9M | [paper] |
| MobileNet(alpha=0.25) | 48.418 | 24.208 | 21.196 | 0.5M | 0.2M | [paper] [tf-models] |
| MobileNet(alpha=0.50) | 35.708 | 14.376 | 12.180 | 1.3M | 0.8M | [paper] [tf-models] |
| MobileNet(alpha=0.75) | 31.588 | 11.758 | 9.878 | 2.6M | 1.8M | [paper] [tf-models] |
| MobileNet(alpha=1.0) | 29.576 | 10.496 | 8.774 | 4.3M | 3.2M | [paper] [tf-models] |
| MobileNetV2(alpha=0.35) | 39.914 | 17.568 | 15.422 | 1.7M | 0.4M | [paper] [tf-models] |
| MobileNetV2(alpha=0.50) | 34.806 | 13.938 | 11.976 | 2.0M | 0.7M | [paper] [tf-models] |
| MobileNetV2(alpha=0.75) | 30.468 | 10.824 | 9.188 | 2.7M | 1.4M | [paper] [tf-models] |
| MobileNetV2(alpha=1.0) | 28.664 | 9.858 | 8.322 | 3.5M | 2.3M | [paper] [tf-models] |
| MobileNetV2(alpha=1.3) | 25.320 | 7.878 | 6.728 | 5.4M | 3.8M | [paper] [tf-models] |
| MobileNetV2(alpha=1.4) | 24.770 | 7.578 | 6.518 | 6.2M | 4.4M | [paper] [tf-models] |
| DenseNet121 | 25.028 | 7.742 | 6.522 | 8.1M | 7.0M | [paper] [torch] |
| DenseNet169 | 23.824 | 6.824 | 5.860 | 14.3M | 12.6M | [paper] [torch] |
| DenseNet201 | 22.680 | 6.380 | 5.466 | 20.2M | 18.3M | [paper] [torch] |
| NASNetLarge | 17.502 | 3.996 | 3.412 | 93.5M | 84.9M | [paper] [tf-models] |
| NASNetMobile | 25.634 | 8.146 | 6.758 | 7.7M | 4.3M | [paper] [tf-models] |
| EfficientNet-B0 | 22.810 | 6.508 | 5.858 | 5.3M | 4.0M | [paper] [tf-tpu] |
| EfficientNet-B1 | 20.866 | 5.552 | 5.050 | 7.9M | 6.6M | [paper] [tf-tpu] |
| EfficientNet-B2 | 19.820 | 5.054 | 4.538 | 9.2M | 7.8M | [paper] [tf-tpu] |
| EfficientNet-B3 | 18.422 | 4.324 | 3.902 | 12.3M | 10.8M | [paper] [tf-tpu] |
| EfficientNet-B4 | 17.040 | 3.740 | 3.344 | 19.5M | 17.7M | [paper] [tf-tpu] |
| EfficientNet-B5 | 16.298 | 3.290 | 3.114 | 30.6M | 28.5M | [paper] [tf-tpu] |
| EfficientNet-B6 | 15.918 | 3.102 | 2.916 | 43.3M | 41.0M | [paper] [tf-tpu] |
| EfficientNet-B7 | 15.570 | 3.160 | 2.906 | 66.7M | 64.1M | [paper] [tf-tpu] |
Reference
- tf efficientnet
- efficientnet keras pre-trained weights
- Implementation of EfficientNet model. Keras and TensorFlow Keras.
History
- 20190912: created.
Copyright
- Post author: kezunlin
- Post link: https://kezunlin.me/post/88fbc049/
- Copyright Notice: All articles in this blog are licensed under CC BY-NC-SA 3.0 unless stating additionally.
keras EfficientNet介绍,在ImageNet任务上涨点明显 | keras efficientnet introduction的更多相关文章
- Keras(一)Sequential与Model模型、Keras基本结构功能
keras介绍与基本的模型保存 思维导图 1.keras网络结构 2.keras网络配置 3.keras预处理功能 模型的节点信息提取 config = model.get_config() 把mod ...
- 解决 ImportError: cannot import name 'initializations' from 'keras' (C:\Users\admin\AppData\Roaming\Python\Python37\site-packages\keras\__init__.py)
解决 ImportError: cannot import name 'initializations' from 'keras' : [原因剖析] 上述代码用的是 Keras version: '1 ...
- 【Keras篇】---Keras初始,两种模型构造方法,利用keras实现手写数字体识别
一.前述 Keras 适合快速体验 ,keras的设计是把大量内部运算都隐藏了,用户始终可以用theano或tensorflow的语句来写扩展功能并和keras结合使用. 二.安装 Pip insta ...
- 深度学习利器: TensorFlow系统架构及高性能程序设计
2015年11月9日谷歌开源了人工智能平台TensorFlow,同时成为2015年最受关注的开源项目之一.经历了从v0.1到v0.12的12个版本迭代后,谷歌于2017年2月15日发布了TensorF ...
- Keras中图像维度介绍
报错问题: ValueError: Negative dimension size caused by subtracting 5 from 1 for 'conv2d_1/convolution' ...
- 关于keras框架的介绍以及操作使用
Keras 是一个 Python 深度学习框架,可以方便地定义和训练几乎所有类型的深度学习模型.Keras 最开始是为研究人员开发的,其目的在于快速实验.我们可以进入网站主页 - Keras 中文文档 ...
- keras系列︱Application中五款已训练模型、VGG16框架(Sequential式、Model式)解读(二)
引自:http://blog.csdn.net/sinat_26917383/article/details/72859145 中文文档:http://keras-cn.readthedocs.io/ ...
- 深度学习应用系列(二) | 如何使用keras进行迁移学习,以训练和识别自己的图片集
本文的keras后台为tensorflow,介绍如何利用预编译的模型进行迁移学习,以训练和识别自己的图片集. 官网 https://keras.io/applications/ 已经介绍了各个基于Im ...
- 【tf.keras】tf.keras加载AlexNet预训练模型
目录 从 PyTorch 中导出模型参数 第 0 步:配置环境 第 1 步:安装 MMdnn 第 2 步:得到 PyTorch 保存完整结构和参数的模型(pth 文件) 第 3 步:导出 PyTorc ...
随机推荐
- [Go] 利用函数类型实现封装中的回调
当进行业务逻辑开发的时候,经常要进行封装,封装成独立的类文件,在类文件的属性中预留出函数类型的API 在调用该类文件中某些方法的时候,也根据业务需要调用类属性中的函数, 在主业务中可以传递特定的函数注 ...
- MATLAB聚类有效性评价指标(外部 成对度量)
MATLAB聚类有效性评价指标(外部 成对度量) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 更多内容,请看:MATLAB: Clustering ...
- 信号处理函数陷阱:调用malloc导致死锁[转]
概览 因malloc是加锁的,上网了解的相关信息,额外了解到信号处理规范使用,mark 正文 在执行malloc的过程中,跳转到了信号处理函数中.而信号处理函数在调用某个系统api时,内部又调用了ma ...
- <挑战程序设计竞赛> poj 3320 Jessica's Reading Problem 双指针
地址 http://poj.org/problem?id=3320 解答 使用双指针 在指针范围内是否达到要求 若不足要求则从右进行拓展 若满足要求则从左缩减区域 代码如下 正确性调整了几次 然后 ...
- 剑指Offer-42.和为S的两个数字(C++/Java)
题目: 输入一个递增排序的数组和一个数字S,在数组中查找两个数,使得他们的和正好是S,如果有多对数字的和等于S,输出两个数的乘积最小的. 输出描述: 对应每个测试案例,输出两个数,小的先输出. 分析: ...
- 性能分析-java程序篇之案例-工具和方法
1. 背景说明 线上服务响应时间超过40秒,登录服务器发现cpu将近100%了(如下图),针对此问题,本文说明排查过程.工具以定位具体的原因. 2. 分析排查过程 此类问题的排查,有两款神器可用,分别 ...
- docker: manifest for elasticsearch:latest not found
今天在docker安装es出现坑,是这样. 使用: docker pull elasticsearch 提示:manifest for elasticsearch:latest not found如图 ...
- Customize the View Items Layout 自定义视图项目布局
In this lesson, you will learn how to customize the default editor layout in a Detail View. For this ...
- WebGL-3D地图大俯仰角的雾化处理
腾讯位置服务Javascript API GL版,是基于WebGL技术打造的地图API库,使得浏览器环境下也可实现APP端的应用体验,提供2D/3D模式,运行流畅.当前版本提供地图展示.标记.信息窗口 ...
- Data Management Technology(3) -- SQL
SQL is a very-high-level language, in which the programmer is able to avoid specifying a lot of data ...