房屋布局分析《Physics Inspired Optimization on Semantic Transfer Features: An Alternative Method for Room Layout Estimation》
刘天悦 贝壳找房 / 资深工程师

In this paper, we propose an alternative method to estimate room layouts of cluttered indoor scenes. This method enjoys the benefits of two novel techniques. The first one is semantic transfer (ST), which is: (1) a formulation to integrate the relationship between scene clutter and room layout into convolutional neural networks; (2) an architecture that can be end-to-end trained; (3) a practical strategy to initialize weights for very deep networks under unbalanced training data distribution. ST allows us to extract highly robust features under various circumstances, and in order to address the computation redundance hidden in these features we develop a principled and efficient inference scheme named physics inspired optimization (PIO). PIO's basic idea is to formulate some phenomena observed in ST features into mechanics concepts. Evaluations on public datasets LSUN and Hedau show that the proposed method is more accurate than state-of-the-art methods.
语义迁移:
X:原图
Y:semantic 标签
Z:edge 标签
physics inspired optimization (PIO). PIO's basic idea is to formulate some phenomena observed in ST features into mechanics concepts.



加入透视线的先验判断?
-->果然是这个思路。。。

倾斜不倾斜和特征差异在哪?
先识别物体,再(根据多视角几何)定量地把倾斜角度优化出来?
“江苏券”那种倾斜、颠倒的异常情形如何优雅处理?——先把当前图片的vanishing point (也就是主方向)识别出来,再检测物体、或回归时带一个方向角?



Focal Loss论文:Focal Loss for Dense Object Detection RBG和Kaiming大神的新作。 既然有了出发点,那么就要找one-stage detector的准确率不如two-stage detector的原因,作者认为原因是:样本的类别不均衡导致的。我们知道在object detection领域,一张图像可能生成成千上万的candidate locations,但是其中只有很少一部分是包含object的,这就带来了类别不均衡。那么类别不均衡会带来什么后果呢?引用原文讲的两个后果:(1) training is inefficient as most locations are easy negatives that contribute no useful learning signal; (2) en masse, the easy negatives can overwhelm training and lead to degenerate models. 什么意思呢?负样本数量太大,占总的loss的大部分,而且多是容易分类的,因此使得模型的优化方向并不是我们所希望的那样。其实先前也有一些算法来处理类别不均衡的问题,比如OHEM(online hard example mining),OHEM的主要思想可以用原文的一句话概括:In OHEM each example is scored by its loss, non-maximum suppression (nms) is then applied, and a minibatch is constructed with the highest-loss examples。OHEM算法虽然增加了错分类样本的权重,但是OHEM算法忽略了容易分类的样本。 因此针对类别不均衡问题,作者提出一种新的损失函数:focal loss,这个损失函数是在标准交叉熵损失基础上修改得到的。这个函数可以通过减少易分类样本的权重,使得模型在训练时更专注于难分类的样本。为了证明focal loss的有效性,作者设计了一个dense detector:RetinaNet,并且在训练时采用focal loss训练。实验证明RetinaNet不仅可以达到one-stage detector的速度,也能有two-stage detector的准确率。 focal loss的含义可以看如下Figure1,横坐标是pt,纵坐标是loss。CE(pt)表示标准的交叉熵公式,FL(pt)表示focal loss中用到的改进的交叉熵,可以看出和原来的交叉熵对比多了一个调制系数(modulating factor)。为什么要加上这个调制系数呢?目的是通过减少易分类样本的权重,从而使得模型在训练时更专注于难分类的样本。首先pt的范围是0到1,所以不管γ是多少,这个调制系数都是大于等于0的。易分类的样本再多,你的权重很小,那么对于total loss的共享也就不会太大。那么怎么控制样本权重呢?举个例子,假设一个二分类,样本x1属于类别1的pt=0.9,样本x2属于类别1的pt=0.6,显然前者更可能是类别1,假设γ=1,那么对于pt=0.9,调制系数则为0.1;对于pt=0.6,调制系数则为0.4,这个调制系数就是这个样本对loss的贡献程度,也就是权重,所以难分的样本(pt=0.6)的权重更大。Figure1中γ=0的蓝色曲线就是标准的交叉熵损失。 Figure2是在COCO数据集上几个模型的实验对比结果。可以看看再AP和time的对比下,本文算法和其他one-stage和two-stage检测算法的差别。 看完实验结果和提出算法的出发点,接下来就要介绍focal loss了。在介绍focal loss之前,先来看看交叉熵损失,这里以二分类为例,p表示概率,公式如下: 因为是二分类,所以y的值是正1或负1,p的范围为0到1。当真实label是1,也就是y=1时,假如某个样本x预测为1这个类的概率p=0.6,那么损失就是-log(0.6),注意这个损失是大于等于0的。如果p=0.9,那么损失就是-log(0.9),所以p=0.6的损失要大于p=0.9的损失,这很容易理解。 为了方便,用pt代替p,如下公式2:。这里的pt就是前面Figure1中的横坐标。 接下来介绍一个最基本的对交叉熵的改进,也将作为本文实验的baseline,如下公式3。什么意思呢?增加了一个系数at,跟pt的定义类似,当label=1的时候,at=a;当label=-1的时候,at=1-a,a的范围也是0到1。因此可以通过设定a的值(一般而言假如1这个类的样本数比-1这个类的样本数多很多,那么a会取0到0.5来增加-1这个类的样本的权重)来控制正负样本对总的loss的共享权重。 显然前面的公式3虽然可以控制正负样本的权重,但是没法控制容易分类和难分类样本的权重,于是就有了focal loss: 这里的γ称作focusing parameter,γ>=0。 称为调制系数(modulating factor) 作者在实验中采用的是公式5的focal loss(结合了公式3和公式4,这样既能调整正负样本的权重,又能控制难易分类样本的权重): 在实验中a的选择范围也很广,一般而言当γ增加的时候,a需要减小一点(实验中γ=2,a=0.25的效果最好) 贴一下RetinaNet的结构图:Figure3。因为网络结构不是本文的重点,所以这里就不详细介绍了,感兴趣的可以看论文的第4部分。 实验结果: Figure4是对比forground和background样本在不同γ情况下的累积误差。纵坐标是归一化后的损失,横坐标是总的foreground或background样本数的百分比。可以看出γ的变化对正(forground)样本的累积误差的影响并不大,但是对于负(background)样本的累积误差的影响还是很大的(γ=2时,将近99%的background样本的损失都非常小)。 总结: |
|
引用:
房屋布局分析《Physics Inspired Optimization on Semantic Transfer Features: An Alternative Method for Room Layout Estimation》的更多相关文章
- JFS 文件系统概述及布局分析
JFS 文件系统概述及布局分析 日志文件系统如何缩短系统重启时间 如果发生系统崩溃,JFS 提供了快速文件系统重启.通过使用数据库日志技术,JFS 能在几秒或几分钟之内把文件系统恢复到一致状态,而非日 ...
- Vtable内存布局分析
vtale 内存布局分析 虚函数表指针与虚函数表布局 考虑如下的 class: class A { public: int a; virtual void f1() {} virtual void f ...
- pdfminer实现pdf布局分析 python (pdfminer realize layout analysis with PDF python)
使用pdfminer实现pdf文件的布局分析 python 参考资料: https://github.com/euske/pdfminer https://stackoverflow.com/ques ...
- 安卓动态分析工具【Android】3D布局分析工具
https://blog.csdn.net/fancylovejava/article/details/45787729 https://blog.csdn.net/dunqiangjiaodemog ...
- Android布局分析工具HierarchyView的使用方法
本文是从这里看到的:http://www.2cto.com/kf/201404/296960.html 如果我们想宏观的看看自己的布局,Android SDK中有一个工具HierarchyView.b ...
- cocos布局分析
HBox和VBox布局 HBox只是一个水平布局包装类. HBox里面所有的孩子节点都会水平排列成一行 VBox仅仅是对垂直布局的一个简便的类封装. VBox把它的子节点布局在一竖列中. Layout ...
- 嵌入式开发软件环境:uboot、kernel、rootfs、data布局分析
uboot+linux的整体方案 开发板的datasheet中都有详细的地址空间的划分,其中比较重要的两块是:DDR地址空间和Flash地址空间.DDR空间是系统和应用的运行空间,一般由linux系统 ...
- div整体布局分析
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 布局分析002:入门级的CSS导航弹出菜单
这种弹出菜单非常有意思,也有记录的意义,甚至可以说,掌握了这种弹出菜单,基本上CSS掌握的差不多. 主要涉及下面三个重要知识: CSS的继承性质. relative absolute定位. 子选择符& ...
随机推荐
- druid链接数据库
所用jar包 commons-beanutils-1.8.0.jarcommons-logging-1.1.3.jardruid-1.0.9.jarmysql-connector-java-5.1.1 ...
- Computer: Use the mouse to open the analog keyboard
Xx_Introduction Please protection,respect,love,"China's Internet Security Act"! For learni ...
- 将Android封装库通过gradle部署到maven私服并依赖使用
一.在需要发布的模块chrisbaselibrary下的build.gradle中添加以下部分 //maven插件 apply plugin: 'maven' //打包main目录下代码和资源的 ta ...
- ViewAnimator
ViewAnimator是一个基类,它继承了FrameLayout,因此它表现出FrameLayout的特征,可以将多View组件叠在一起.ViewAnimator额外增加的功能正如它的名字所暗示的, ...
- Tornado 框架
Tronado为何物 Tornado全称Tornado Web Server,是一个用Python语言写成的Web服务器兼Web应用框架,由FriendFeed公司在自己的网站FriendFeed中使 ...
- python(二) jupyter 快捷键
jupyter notebook 中的快捷键介绍 当你熟练使用notebooks的基本功能后,掌握他的快捷键是十分必要的,这样可以大大提高你的工作效率.下面是一些比较常用的快捷键: 编辑模式:点击单元 ...
- python与数据库交互的模块pymysql
一.Mysql 1.前提 pip install pymysql import pymysql 2.详情 Connection对象 =====>用于连接数据库 用于建立与数据库的连接 创建对象: ...
- 22(8).模型融合---RegionBoost
在adaboost当中,样本的权重alpha是固定的,蓝色五角星所在的圈中3个○分错了,红色五角星所在的圈中4个×和1个○都分对了,很容易让人想到,这个模型,对于红色位置的判断更加可信. 动态权重,每 ...
- ES6 ES7 ES8 相关用法
set Set作为ES6新的数据解构(类数组),它的成员都是唯一的,因为最直接的使用场景便是去重.并.差.交集的使用.它使用的算法叫做“Same-value-zero equality”,类似精确运算 ...
- 基于V7的新版RL-USB和RL-FlashFS的NAND完整解决方案,实现更简单,用户仅需初始化FMC
说明: 1.新版方案更加好用,不管用户使用的那家NAND,用户要做的仅仅是初始化FMC,其它读写API,擦写均衡,坏块管理,ECC校验和掉电保护都不用操心了. 2.新版RL-USB相比老版本功能强劲了 ...