CF1005D Polycarp and Div 3 思维
3 seconds
256 megabytes
standard input
standard output
Polycarp likes numbers that are divisible by 3.
He has a huge number ss. Polycarp wants to cut from it the maximum number of numbers that are divisible by 33. To do this, he makes an arbitrary number of vertical cuts between pairs of adjacent digits. As a result, after mm such cuts, there will be m+1m+1 parts in total. Polycarp analyzes each of the obtained numbers and finds the number of those that are divisible by 33.
For example, if the original number is s=3121s=3121, then Polycarp can cut it into three parts with two cuts: 3|1|213|1|21. As a result, he will get two numbers that are divisible by 33.
Polycarp can make an arbitrary number of vertical cuts, where each cut is made between a pair of adjacent digits. The resulting numbers cannot contain extra leading zeroes (that is, the number can begin with 0 if and only if this number is exactly one character '0'). For example, 007, 01 and 00099 are not valid numbers, but 90, 0 and 10001 are valid.
What is the maximum number of numbers divisible by 33 that Polycarp can obtain?
The first line of the input contains a positive integer ss. The number of digits of the number ss is between 11 and 2⋅1052⋅105, inclusive. The first (leftmost) digit is not equal to 0.
Print the maximum number of numbers divisible by 33 that Polycarp can get by making vertical cuts in the given number ss.
3121
2
6
1
1000000000000000000000000000000000
33
201920181
4
In the first example, an example set of optimal cuts on the number is 3|1|21.
In the second example, you do not need to make any cuts. The specified number 6 forms one number that is divisible by 33.
In the third example, cuts must be made between each pair of digits. As a result, Polycarp gets one digit 1 and 3333 digits 0. Each of the 3333 digits 0 forms a number that is divisible by 33.
In the fourth example, an example set of optimal cuts is 2|0|1|9|201|81. The numbers 00, 99, 201201 and 8181 are divisible by 33.
题意:给我们一个数,我们可以对这个数进行任意的划分,但是不能出现前缀零的无意义数,问我们最多可以划分出几个可以整除三的数?
分析:直接遍历,考虑这四种情况就可以
1.如果单独的数能整除三,那么这数肯定可以,结果直接加一
2.如果不能整除三,那么将得到一个余数,然后接下来我们会在这个数的基础上加上新的数,如果余数和这个数的余数相同,则中间肯定加了一个能整除三的数,结果加一
3.如果不能整除三的数加上一个数后能整除三,则结果加一
4.如果不能整除三的数加上一个数既不能整除三且余数和之前不相同,则再加一个数肯定会得到和前面两个数相同的余数或者整除三
根据以上分析我们每次加数时将余数打上标志,然后根据上诉分析判断结果是否能加一,记得结果加一后要把标志置为0
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>
#define debug(a) cout << #a << " " << a << endl
using namespace std;
const int maxn = 2e5 + ;
const int mod = 1e9 + ;
typedef long long ll;
int main() {
string s;
while( cin >> s ) {
ll now = , cnt = , vis[] = { , , };
for( ll i = ; i < s.length(); i ++ ) {
now += s[i]-'';
now %= ;
if( vis[now] ) {
cnt ++;
now = ;
vis[] = vis[] = ;
} else {
vis[now] = ;
}
}
cout << cnt << endl;
}
return ;
}
CF1005D Polycarp and Div 3 思维的更多相关文章
- 『ACM C++』 Codeforces | 1005D - Polycarp and Div 3
今天佛了,魔鬼周一,在线教学,有点小累,但还好,今天AC了一道,每日一道,还好达成目标,还以为今天完不成了,最近任务越来越多,如何高效完成该好好思考一下了~最重要的还是学业的复习和预习. 今日兴趣新闻 ...
- CodeForces 1005D Polycarp and Div 3(思维、贪心、dp)
http://codeforces.com/problemset/problem/1005/D 题意: 给一个仅包含数字的字符串,将字符串分割成多个片段(无前导0),求这些片段里最多有多少是3的倍数 ...
- codeforces 887A Div. 64 思维 模拟
A. Div. 64 time limit per test 1 second memory limit per test 256 megabytes input standard input out ...
- C. Nice Garland Codeforces Round #535 (Div. 3) 思维题
C. Nice Garland time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...
- C Alyona and Spreadsheet Codeforces Round #401(Div. 2)(思维)
Alyona and Spreadsheet 这就是一道思维的题,谈不上算法什么的,但我当时就是不会,直到别人告诉了我,我才懂了的.唉 为什么总是这么弱呢? [题目链接]Alyona and Spre ...
- Polycarp's Pockets(思维)
Polycarp has nn coins, the value of the ii-th coin is aiai. Polycarp wants to distribute all the coi ...
- E. Superhero Battle Codeforces Round #547 (Div. 3) 思维题
E. Superhero Battle time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- Codeforces 1005D:Polycarp and Div 3
题目链接:http://codeforces.com/problemset/problem/1005/D 题意 给出个字符串(全是数字),把这个字符串换分成一些子串,最多能划分多少个能够被3整除的子串 ...
- Codeforces #496 (Div. 3) Polycarp and Div 3
思路1: https://blog.csdn.net/qq_41730082/article/details/80984316 题目的意思是给你一串数字长度为(1-2e5),当然由于它的这一串数字是不 ...
随机推荐
- UE4 游戏模块初始化顺序
最近看教学,有个讲解UE4初始化顺序的,记录一下. 首先创建一个Actor,Character,GameInstance,GameMode,LevelScriptActor(关卡),PlayerCon ...
- linux集群实施与部署-----Nginx
( 1 ) 配置基本环境 //安装虚拟工具 #cd /media/VMware\ Tools/ #cp VMwareTools--.tar.gz/tmp/ #cd /tmp/ #tar-xvzf VM ...
- Python pip包管理器安装第三方库超时解决方案
一.国内镜像安装 使用方法:pip install --index 镜像网站 第三方库名 二.镜像网站 http://pypi.douban.com/simple/ 豆瓣 http://mirrors ...
- Redis批量删除key的小技巧,你知道吗?
在使用redis的过程中,经常会遇到要批量删除某种规则的key,但是redis提供了批量查询一类key的命令keys或scan,没有提供批量删除某种规则key的命令,怎么办?看完本文即可,哈哈. 本文 ...
- Zookeeeper应用实践(四)
zk的应用还是非常广泛的. 1. 分布式锁 单机环境下的锁还是很容易去实现的,但是在分布式环境下一切都变得不是那么简单.zk实现分布式锁的原理还简单,因为在分布式环境中的zk节点的变化会被每一台机器w ...
- java学习-NIO(四)Selector
这一节我们将探索选择器(selectors).选择器提供选择执行已经就绪的任务的能力,这使得多元 I/O 成为可能.就像在第一章中描述的那样,就绪选择和多元执行使得单线程能够有效率地同时管理多个 I/ ...
- windows server2012 nVME和网卡等驱动和不识别RAID10问题
安装2012---不识别M.2 nVME,下官方驱动,注入到系统里 缺多驱动---用ITSK万能驱动添加:|Win8012R2.x64(可解决不支持操作系统,win10与server2012R2通用) ...
- 算法与数据结构基础 - 双指针(Two Pointers)
双指针基础 双指针(Two Pointers)是面对数组.链表结构的一种处理技巧.这里“指针”是泛指,不但包括通常意义上的指针,还包括索引.迭代器等可用于遍历的游标. 同方向指针 设定两个指针.从头往 ...
- zuul 路由网关 微服务架构系统中
在微服务架构中,基本包含以下常见的组件.服务注册与发现.服务消费.负载均衡.断路器.只能路由.配置管理等.一个简单的微服务架构系统如下 一.Zuul简介 Zuul的主要功能是路由转发和过滤器.路由功能 ...
- 章节十六、3-TestNG方法和类注解
一.Test Suite(测试套件) 我们通常认为一个testcase就是一个测试方法,但是会有很多的testcase,所以我们不可能把所有的testcase放到同一个测试类中,假如需要测试的页面有1 ...