为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明可以通过这个通道由A房间到达B房间,但并不说明通过它可以由B房间到达A房间。Gardon需要请你写个程序确认一下是否任意两个房间都是相互连通的,即:对于任意的i和j,至少存在一条路径可以从房间i到房间j,也存在一条路径可以从房间j到房间i。 

Input

输入包含多组数据,输入的第一行有两个数:N和M,接下来的M行每行有两个数a和b,表示了一条通道可以从A房间来到B房间。文件最后以两个0结束。 
Output

对于输入的每组数据,如果任意两个房间都是相互连接的,输出"Yes",否则输出"No"。 
Sample Input

3 3
1 2
2 3
3 1
3 3
1 2
2 3
3 2
0 0

Sample Output

Yes
No 题目大意:一个有向图,有n个点和m条边。判断整个图是否强连通,如果是,输出Yes,否则输出No。
题目可以用Kosaraju算法和Tarjan算法。
详解来自于:《算法竞赛 入门到进阶》
Kosaraju算法:
Kosaraju算法用到了“反图”的技术,基于下面两个原理:
(1)一个有向图G,把G所有的边反向,建立反图rG,反图rG不会改变原图G的强连通性。也就是说,图G的SCC数量与rG的SCC(强联通分量)数量相同。
(2)对原图G和反图rG各做一次DFS,可以确定SCC数量。 代码:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#pragma GCC optimize(2)
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<queue>
#include<set>
#include<cmath>
#include<string>
#include<map>
#include<vector>
#include<ctime>
#include<stack>
using namespace std;
#define mm(a,b) memset(a,b,sizeof(a))
typedef long long ll;
const long long mod = 1e9+;
const int maxn = 1e4+;
const int inf = 0x3f3f3f3f;
vector<int>G[maxn],rG[maxn];
vector<int>S;//存第一次dfs1的结果:标记点的先后顺序
int vis[maxn],sccno[maxn],cnt;//cnt为连通分量的个数 void dfs1(int u)
{
if(vis[u]) return;
vis[u]=;
for(int i=;i<G[u].size();i++) dfs1(G[u][i]);
S.push_back(u);//标记点的先后顺序,标记大的放在S的后面
} void dfs2(int u)
{
if(sccno[u]) return;
sccno[u]=cnt;
for(int i=;i<rG[u].size();i++) dfs2(rG[u][i]);
} void Kosaraju(int n)
{
cnt=;
S.clear();
mm(sccno,);
mm(vis,);
for(int i=;i<=n;i++) dfs1(i); //点的编号:1~n递归所有点
for(int i=n-;i>=;i--)
if(!sccno[S[i]])
{
cnt++;
dfs2(S[i]);
}
} int main()
{
int n,m,u,v;
while(scanf("%d %d",&n,&m),n||m)
{
for(int i=;i<n;i++)
{
G[i].clear();
rG[i].clear();
}
for(int i=;i<m;i++)
{
scanf("%d %d",&u,&v);
G[u].push_back(v);
rG[v].push_back(u);
}
Kosaraju(n);
if(cnt==) printf("Yes\n");
else printf("No\n");
}
return ;
}

Tarjan算法

上面的Kosaraju算法,其做法是从图中一个个地把SCC“挖”出来。Tarjan算法能在DFS中把所有点都按SCC分开。


 #pragma comment(linker, "/STACK:1024000000,1024000000")
#pragma GCC optimize(2)
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<queue>
#include<set>
#include<cmath>
#include<string>
#include<map>
#include<vector>
#include<ctime>
#include<stack>
using namespace std;
#define mm(a,b) memset(a,b,sizeof(a))
typedef long long ll;
const long long mod = 1e9+;
const int maxn = 1e4+;
const int inf = 0x3f3f3f3f;
int cnt; //强连通分量的个数
int low[maxn],num[maxn],dfn;
int sccno[maxn];
stack<int>st;
vector<int>G[maxn]; void dfs(int u)
{
st.push(u);
low[u]=num[u]=++dfn;
for(int i=;i<G[u].size();i++)
{
int v=G[u][i];
if(!num[v]) //未访问过的点,继续DFS
{
dfs(v); //DFS的最底层,是最后一个SCC
low[u]=min(low[v],low[u]);
}
else if(!sccno[v]) //处理回退边
low[u]=min(low[u],num[v]);
}
if(low[u]==num[u]) //栈底的点是SCC的祖先,它的low=num
{
cnt++;
while()
{
int v=st.top(); //v弹出栈
st.pop();
sccno[v]=cnt;
if(u==v) break; //栈底的点是SCC的祖先
}
}
} void Tarjan(int n)
{
cnt=dfn=;
mm(sccno,);
mm(num,);
mm(low,);
for(int i=;i<=n;i++)
if(!num[i])
dfs(i);
} int main()
{
int n,m,u,v;
while(scanf("%d %d",&n,&m),n||m)
{
for(int i=;i<=n;i++) G[i].clear();
for(int i=;i<m;i++)
{
scanf("%d %d",&u,&v);
G[u].push_back(v);
}
Tarjan(n);
if(cnt==) printf("Yes\n");
else printf("No\n");
}
return ;
}

 

【强联通图 | 强联通分量】HDU 1269 迷宫城堡 【Kosaraju或Tarjan算法】的更多相关文章

  1. HDU 1269 迷宫城堡 (Kosaraju)

    题目链接:HDU 1269 Problem Description 为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000), ...

  2. HDU 1269 迷宫城堡(强连通)

    HDU 1269 迷宫城堡 pid=1269" target="_blank" style="">题目链接 题意:中文题 思路:强连通模板题 代 ...

  3. HDU 1269 迷宫城堡 (强连通分量,常规)

    题意: 判断所给的有向图是否是一个强连通图. 思路: 如果连通分量大于1则必定No,如果强连通分量大于1也是No.tarjan算法求强连通分量. #include <cstdio> #in ...

  4. hdu 1269 迷宫城堡

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1269 迷宫城堡 Description 为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个 ...

  5. hdu 1269 迷宫城堡(强联通分量,基础)

    这是一道模版题 题目 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<string.h> #include ...

  6. hdu 1269 迷宫城堡 最简单的联通图题 kosaraju缩点算法

    迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Problem Des ...

  7. HDU 1269 迷宫城堡(判断有向图强连通分量的个数,tarjan算法)

    迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  8. hdu 1269 迷宫城堡 强连通分量

    迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  9. HDU - 1269 迷宫城堡(有向图的强连通分量)

    d.看一个图是不是强连通图 s.求出强连通分量,看看有没有一个强连通分量包含所有点. c.Tarjan /* Tarjan算法 复杂度O(N+M) */ #include<iostream> ...

随机推荐

  1. SpringBoot底层原理及分析

    一,Spring Boot简介 1.什么是Spring Boot: SpringBoot是由Pivotal团队提供的框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程. 该框架使用了特 ...

  2. Shell.Users 提权

    <% Set  o=CreateObject( "Shell.Users" ) Set z=o.create("test") z.changePasswo ...

  3. JavaSE之——并没有多维数组

     近日在读<疯狂Java讲义>精粹第二版,部分语述摘自其中,自己边敲边理解 前言       我们知道,Java语言支持的类型有两种:            1.基本类型(即八大基本数据类 ...

  4. xml的四种解析方式(转载)

    众所周知,现在解析XML的方法越来越多,但主流的方法也就四种,即:DOM.SAX.JDOM和DOM4J 下面首先给出这四种方法的jar包下载地址 DOM:在现在的Java JDK里都自带了,在xml- ...

  5. 按需制作最小的本地yum源

    [需求背景] 有时候客户的环境里面只能离线安装文件,此时可以使用CentOS的ISO光盘作为本地源进行安装,或者是制作一个包含了YUM源服务的虚拟机. 无论上面的哪一种方式都不够轻量,我们自己的组件可 ...

  6. centos部署oracle rac单实例11.2.0.3数据库(使用asm磁盘)

    部署oracle rac单实例数据库,需要安装grid和datavase两部分,所以首先创建两个用户oracle和grid,因为不能使用root用户进行安装,在安装之前首先需要修改一些系统参数和安装一 ...

  7. JavaWeb——Servlet开发1

    Java Servlet是运行在服务器端上的程序,Servlet是Java Servlet包中的一个接口,能够直接处理和相应客户端的请求,也可以将工作委托给应用的其他类. public interfa ...

  8. Liunx查看后1000行的命令以及查看中间部分

    linux 如何显示一个文件的某几行(中间几行) [一]从第3000行开始,显示1000行.即显示3000~3999行 cat filename | tail -n +3000 | head -n 1 ...

  9. 约会安排 HDU - 4553(线段树区间查询,区间修改,区间合并)

    题目: 寒假来了,又到了小明和女神们约会的季节.  小明虽为屌丝级码农,但非常活跃,女神们常常在小明网上的大段发言后热情回复“呵呵”,所以,小明的最爱就是和女神们约会.与此同时,也有很多基友找他开黑, ...

  10. maven学习(1)下载和安装和初步使用(手动构建项目和自动构建项目)

    1:背景 关于项目的搭建,有些人使用开发工具搭建项目,然后将项目所依赖第三方jar 复制到类路径下面,上述搭建方式没有第三方类库的依赖关系,在导入一个jar包的时候,这个jar包还可能依赖其他jar包 ...