POJ-1325 Machine Schedule 二分图匹配 最小点覆盖问题
题意:
有两台机器A,B,分别有n,m种模式,初始都在0模式,现在有k项任务,每项任务要求A或者B调到对应的模式才能完成。问最少要给机器A,B调多少次模式可以完成任务。
思路:
相当于是在以n、m个点构成的二分图中,求二分图的最小顶点覆盖数(就是每个任务都涉及到,所需的顶点数)。根据Konig定理,二分图的最小顶点覆盖数就是求最大匹配数,注意这里是Base 0的,就是初始不用调整模式就可以完成0模式的任务,所以读入的时候不用考虑与0相连的边。
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
using namespace std;
//#pragma GCC optimize(3)
//#pragma comment(linker, "/STACK:102400000,102400000") //c++
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull; typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9+;
const double esp = 1e-;
const double PI=acos(-1.0); template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
// #define _DEBUG; //*//
#ifdef _DEBUG
freopen("input", "r", stdin);
// freopen("output.txt", "w", stdout);
#endif
/*-----------------------showtime----------------------*/
const int maxn = 1e5+;
struct edge{
int v,nx;
}e[maxn];
int h[maxn],tot = ;
void addedge(int u,int v){
e[tot].v = v;
e[tot].nx = h[u];
h[u] = tot++;
}
int mx[maxn],my[maxn],vis[maxn];
bool dfs(int x){ for(int i = h[x]; ~i; i = e[i].nx){
int v = e[i].v; if(vis[v]==){
vis[v] = ;
if(mx[v]==-||dfs(mx[v])){
mx[v] = x;
my[x] = v;
return true;
}
}
}
return false;
}
int main(){
int n,m,k;
while(~scanf("%d", &n) && n){
tot = ;
memset(h,-,sizeof(h));
memset(mx,-,sizeof(mx));
memset(my,-,sizeof(my)); scanf("%d%d", &m, &k);
for(int i=; i<=k; i++){
int u,v,q;
scanf("%d%d%d", &q, &u, &v);
if(u*v)addedge(u,v);
} int ans = ;
for(int i=; i<n; i++){
memset(vis,,sizeof(vis));
if(dfs(i))ans++;
}
printf("%d\n", ans);
}
return ;
}
POJ1325
POJ-1325 Machine Schedule 二分图匹配 最小点覆盖问题的更多相关文章
- hdu - 1150 Machine Schedule (二分图匹配最小点覆盖)
http://acm.hdu.edu.cn/showproblem.php?pid=1150 有两种机器,A机器有n种模式,B机器有m种模式,现在有k个任务需要执行,没切换一个任务机器就需要重启一次, ...
- POJ - 1325 Machine Schedule 二分图 最小点覆盖
题目大意:有两个机器,A机器有n种工作模式,B机器有m种工作模式,刚開始两个机器都是0模式.假设要切换模式的话,机器就必须的重新启动 有k个任务,每一个任务都能够交给A机器的i模式或者B机器的j模式完 ...
- poj 1325 Machine Schedule 二分匹配,可以用最大流来做
题目大意:机器调度问题,同一个任务可以在A,B两台不同的机器上以不同的模式完成.机器的初始模式是mode_0,但从任何模式改变成另一个模式需要重启机器.求完成所有工作所需最少重启次数. ======= ...
- POJ 1325 Machine Schedule(zoj 1364) 最小覆盖数
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=364 http://poj.org/problem?id=1325 题目大意: ...
- poj 1325 Machine Schedule 最小点覆盖
题目链接:http://poj.org/problem?id=1325 As we all know, machine scheduling is a very classical problem i ...
- POJ 1325 Machine Schedule(最小点覆盖)
http://poj.org/problem?id=1325 题意: 两种机器A和B.机器A具有n种工作模式,称为mode_0,mode_1,...,mode_n-1,同样机器B有m种工作模式mode ...
- HDU - 1150 POJ - 1325 Machine Schedule 匈牙利算法(最小点覆盖)
Machine Schedule As we all know, machine scheduling is a very classical problem in computer science ...
- poj 1325 Machine Schedule
Time Limit: 1000 MS Memory Limit: 10000 KB 64-bit integer IO format: %I64d , %I64u Java class name ...
- poj 1325 Machine Schedule 题解
Machine Schedule Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14479 Accepted: 6172 ...
随机推荐
- Java类的加载 链接 初始化
原文地址 Java类的加载.链接和初始化.Java字节代码的表现形式是字节数组(byte[]),而Java类在JVM中的表现形式是java.lang.Class类的对象.一个Java类从字节代码到能够 ...
- codeforces 371A K-Periodic Array
很简单,就是找第i位.i+k位.i+2*k位...........i+m*k位有多少个数字,计算出每个数出现的次数,找到出现最多的数,那么K-Periodic的第K位数肯定是这个了.这样的话需要替换的 ...
- Linux常用的命令及使用方法
1.请用命令查出ifconfig命令程序的绝对路径 [root@localhost ~]# which ifconfig(ifconfig是linux中用于显示或配置网络设备(网络接口卡)的命令) / ...
- JavaSE之——并没有多维数组
近日在读<疯狂Java讲义>精粹第二版,部分语述摘自其中,自己边敲边理解 前言 我们知道,Java语言支持的类型有两种: 1.基本类型(即八大基本数据类 ...
- 教老婆学Linux运维(一)初识Linux
零.前言 之一 为什么写这个系列?为什么是Linux? 老婆自从怀孕以后,辞职在家待了好几年了,现在时常感觉与社会脱节.所以想找个工作. 做了多年程序员,有点人脉也都基本是在IT圈子里,只能帮忙找找I ...
- Mac OS 上的一些骚操作
本帖记录个人在使用 Mac 操作系统上的一些骚操作,不断更新,以飨读者. 快速移动网页到顶部或底部 用双指上下划触摸板吗?NO,我们有更骚的操作: command + ↑ 回到顶部 command + ...
- LayDate使用
layDate非常愿意和您成为工作伙伴.她致力于成为全球最用心的web日期支撑,为国内外所有从事web应用开发的同仁提供力所能及的动力.她基于原生JavaScript精心雕琢,兼容了包括IE6在内的所 ...
- 测试自动化:java+selenium3 UI自动化(2) - 启动Firefox
1. selenium和浏览器 基于selenium的这套自动化体系,其实现关键就在于对于各浏览器的顺畅操作. 事实上当selenium刚开始起家的时候,他使用的还是javascript注入的方式来驱 ...
- 全世界仅有的唯一最高LINUX版本的白菜路由,支持NAND记
在上上篇 真千兆路由的极限之OPENWRT MAKE, 某品牌白菜价QCA9558/QCA9880/QCA8337N纯种组合OS搭建时记 里,有没有还记否之模式退一步,海阔天空 回到了远古时代的ar7 ...
- python调用支付宝支付接口详细示例—附带Django demo代码
项目演示: 一.输入金额 二.跳转到支付宝付款 三.支付成功 四.跳转回自己网站 在使用支付宝接口的前期准备: 1.支付宝公钥 2.应用公钥 3.应用私钥 4.APPID 5.Django 1.11. ...