link-cut tree

#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
const int N = 5e5 + ;
struct Node{
int rev, rt;
int son[], pre;
int mx, val, id;
void init(){
rt = ; rev = pre = son[] = son[] = ;
mx = val = id = ;
}
}tr[N];
void Push_Rev(int x){
if(!x) return ;
swap(lch(x), rch(x));
tr[x].rev ^= ;
}
void Push_Up(int x){
if(!x) return ;
tr[x].mx = tr[x].val, tr[x].id = x;
if(tr[x].mx < tr[lch(x)].mx) tr[x].mx = tr[lch(x)].mx, tr[x].id = tr[lch(x)].id;
if(tr[x].mx < tr[rch(x)].mx) tr[x].mx = tr[rch(x)].mx, tr[x].id = tr[rch(x)].id;
}
void Push_Down(int x){
if(tr[x].rev){
tr[x].rev = ;
Push_Rev(lch(x));
Push_Rev(rch(x));
}
}
void Rev(int x){
if(!tr[x].rt) Rev(tr[x].pre);
Push_Down(x);
}
void rotate(int x){
if(tr[x].rt) return;
int y = tr[x].pre, z = tr[y].pre;
int k = (rch(y) == x);
tr[y].son[k] = tr[x].son[k^];
tr[tr[y].son[k]].pre = y;
tr[x].son[k^] = y;
tr[y].pre = x;
tr[x].pre = z;
if(tr[y].rt) tr[y].rt = , tr[x].rt = ;
else tr[z].son[rch(z) == y] = x;
Push_Up(y);
}
void Splay(int x){
Rev(x);
while(!tr[x].rt){
int y = tr[x].pre, z = tr[y].pre;
if(!tr[y].rt){
if(( x == rch(y) ) != (y == rch(z))) rotate(x);
else rotate(y);
}
rotate(x);
}
Push_Up(x);
}
void Access(int x){
int y = ;
do{
Splay(x);
tr[rch(x)].rt = ;
rch(x) = y;
tr[y].rt = ;
Push_Up(x);
y = x;
x = tr[x].pre;
}while(x);
}
void Make_rt(int x){
Access(x);
Splay(x);
Push_Rev(x);
}
bool judge(int u, int v){
while(tr[u].pre) u = tr[u].pre;
while(tr[v].pre) v = tr[v].pre;
return u == v;
}
void link(int u, int v){
Make_rt(u);
tr[u].pre = v;
}
void cut(int u, int v){
Make_rt(u);
Access(v);
Splay(v);
tr[lch(v)].pre = ;
tr[lch(v)].rt = ;
tr[v].pre = ;
lch(v) = ;
}

维护子树。

维护子树就是新开一个状态存一下 所有非偏爱子节点的信息, 然后每次access的时候我们就根据偏爱子节点的变化, 从而更新这个新开的状态。

这个写法 是维护 子树内的亦或和。

代码:

#define lch(x) tr[x].son[0]
#define rch(x) tr[x].son[1]
const int N = 5e5 + ;
struct Node{
int rev, rt;
int son[], pre;
int sum, vsum, key;
void init(){
rt = ; rev = pre = son[] = son[] = ;
sum = vsum = key = ;
}
}tr[N];
void Push_Rev(int x){
if(!x) return ;
swap(lch(x), rch(x));
tr[x].rev ^= ;
}
void Push_Up(int x){
if(!x) return ;
tr[x].sum = tr[x].key ^ tr[lch(x)].sum ^ tr[rch(x)].sum ^ tr[x].vsum;
}
void Push_Down(int x){
if(tr[x].rev){
tr[x].rev = ;
Push_Rev(lch(x));
Push_Rev(rch(x));
}
}
void Rev(int x){
if(!tr[x].rt) Rev(tr[x].pre);
Push_Down(x);
}
void rotate(int x){
if(tr[x].rt) return;
int y = tr[x].pre, z = tr[y].pre;
int k = (rch(y) == x);
tr[y].son[k] = tr[x].son[k^];
tr[tr[y].son[k]].pre = y;
tr[x].son[k^] = y;
tr[y].pre = x;
tr[x].pre = z;
if(tr[y].rt) tr[y].rt = , tr[x].rt = ;
else tr[z].son[rch(z) == y] = x;
Push_Up(y);
}
void Splay(int x){
Rev(x);
while(!tr[x].rt){
int y = tr[x].pre, z = tr[y].pre;
if(!tr[y].rt){
if(( x == rch(y) ) != (y == rch(z))) rotate(x);
else rotate(y);
}
rotate(x);
}
Push_Up(x);
}
void Access(int x){
int y = ;
do{
Splay(x);
tr[rch(x)].rt = ;
tr[x].vsum ^= tr[rch(x)].sum;
rch(x) = y;
tr[x].vsum ^= tr[rch(x)].sum;
tr[y].rt = ;
Push_Up(x);
y = x;
x = tr[x].pre;
}while(x);
}
void Make_rt(int x){
Access(x);
Splay(x);
Push_Rev(x);
}
void link(int u, int v){
Make_rt(u);
Access(v);
Splay(v);
tr[u].pre = v;
tr[v].
vsum ^= tr[u].sum;
Push_Up(v);
}
void cut(int u, int v){
Make_rt(u);
Access(v);
Splay(v);
tr[lch(v)].pre = ;
tr[lch(v)].rt = ;
tr[v].pre = ;
lch(v) = ;
Push_Up(v);
}

模板汇总——LCT的更多相关文章

  1. 模板—数据结构—LCT

    模板—数据结构—LCT Code: #include <cstdio> #include <algorithm> using namespace std; #define N ...

  2. 单元最短路径算法模板汇总(Dijkstra, BF,SPFA),附链式前向星模板

    一:dijkstra算法时间复杂度,用优先级队列优化的话,O((M+N)logN)求单源最短路径,要求所有边的权值非负.若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的 ...

  3. link cut tree模板(LCT模板)

    update:2017.09.26 #include <bits/stdc++.h> using namespace std; struct Link_Cut_Tree { + ; ], ...

  4. 【模板】NOIP模板汇总

    图论 数据结构 数学 其他: 洛谷模板:a,b两个字符串,求b串在a串中出现的位置 #include<iostream> #include<cstdio> #include&l ...

  5. 模板汇总——KMP & EX-KMP

    1. kmp 相当于往前求出一段字符信息,使得 这段字符信息和前缀相等. void getnext(){ , j = ; nx[] = -; while(j < m){ || b[j] == b ...

  6. 模板汇总——AC自动机

    AC自动机 模板题 HDU-2222 Keywords Search #include<bits/stdc++.h> using namespace std; #define LL lon ...

  7. 【模板】LCT

    核心思想: 动态维护一个森林.支持删边,加边,查询链信息等很多操作. 由若干棵$Splay$组成,每棵$Splay$维护一条链,以深度作为关键字. 也就是说$Splay$的中序遍历相当于从上到下遍历这 ...

  8. python实现AES/DES/RSA/MD5/SM2/SM4/3DES加密算法模板汇总

    都是作者累积的,且看其珍惜,大家可以尽量可以保存一下,如果转载请写好出处https://www.cnblogs.com/pythonywy 一.md5加密 1.简介 这是一种使用非常广泛的加密方式,不 ...

  9. 【POJ各种模板汇总】(写在逆风省选前)(不断更新中)

    1.POJ1258 水水的prim……不过poj上硬是没过,wikioi上的原题却过了 #include<cstring> #include<algorithm> #inclu ...

随机推荐

  1. 【MySQL】目录、文件权限问题

    详情如下: $ cat /usr/local/mysql/data/Phoenix-slow.log cat: /usr/local/mysql/data/Phoenix-slow.log: Perm ...

  2. 微信支付java开发

    微信公众平台 (此处只讲pay) 微信商户平台,公众号的后台管理工具,包含公众号的商户信息,公众号支付,扫码支付,刷卡支付 1.商户信息包含商户号,和此公众平台关联的商户号,需登录商户平台设置商户秘钥 ...

  3. 集合(Collection解析 Set List Map三大集合运用)

    集合的概念:          集合是包含多个对象的简单对象,所包含的对象称为元素.集合里面可以包含任意多个对象,数量可以变化:同时对对象的类型也没有限制,也就是说集合里面的所有对象的类型可以相同,也 ...

  4. 关于程序null值的见解

    今天遇到了一个问题,查询一条数据,返回用list接,发现少了2个值(ssh框架).执行SQL少的这两个字段的值为null.上图说明一下: 可以看到第一次查询没有角标38.39的值. 是同一条SQL,第 ...

  5. JAVA课堂-动手动脑1

    一.Enum:一般用来表示一组相同类型的常量.对这些属性用常量的好处是显而易见的,不仅可以保证单例,且比较时候可以用”==”来替换equals,枚举对象里面的值都必须是唯一的. 代码: public  ...

  6. Apache 80端口可以访问,8080却不可访问

    RT, 记录一下,后面看是否有解决方案.

  7. 跟着大彬读源码 - Redis 10 - 对象编码之整数集合

    [TOC] 整数集合是 Redis 集合键的底层实现之一.当一个集合只包含整数值元素,并且元素数量不多时,Redis 就会使用整数集合作为集合键的底层实现. 1 整数集合的实现 整数集合是 Redis ...

  8. Java——数据结构(链表)

    链表,可扩展长度,泛型. public class Link { Node header = null; //头结点 int length;//当前链表长度 class Node { Node nex ...

  9. python第二课--分支结构与循环结构

    if语句---分支结构 在Python中,要构造分支结构可以使用if.elif和else关键字.所谓关键字就是有特殊含义的单词,像if和else就是专门用于构造分支结构的关键字,很显然你不能够使用它作 ...

  10. 物联网时代-跟着Thingsboard学IOT架构-HTTP设备协议及API相关限制

    thingsboard官网: https://thingsboard.io/ thingsboard GitHub: https://github.com/thingsboard/thingsboar ...