Python + opencv 实现图片文字的分割
实现步骤:
1、通过水平投影对图形进行水平分割,获取每一行的图像;
2、通过垂直投影对分割的每一行图像进行垂直分割,最终确定每一个字符的坐标位置,分割出每一个字符;
先简单介绍一下投影法:分别在水平和垂直方向对预处理(二值化)的图像某一种像素进行统计,对于二值化图像非黑即白,我们通过对其中的白点或者黑点进行统计,根据统计结果就可以判断出每一行的上下边界以及每一列的左右边界,从而实现分割的目的。
下面通过Python+opencv来实现该功能
首先来实现水平投影:
import cv2
import numpy as np '''水平投影'''
def getHProjection(image):
hProjection = np.zeros(image.shape,np.uint8)
#图像高与宽
(h,w)=image.shape
#长度与图像高度一致的数组
h_ = [0]*h
#循环统计每一行白色像素的个数
for y in range(h):
for x in range(w):
if image[y,x] == 255:
h_[y]+=1
#绘制水平投影图像
for y in range(h):
for x in range(h_[y]):
hProjection[y,x] = 255
cv2.imshow('hProjection2',hProjection) return h_ if __name__ == "__main__":
#读入原始图像
origineImage = cv2.imread('test.jpg')
# 图像灰度化
#image = cv2.imread('test.jpg',0)
image = cv2.cvtColor(origineImage,cv2.COLOR_BGR2GRAY)
cv2.imshow('gray',image)
# 将图片二值化
retval, img = cv2.threshold(image,127,255,cv2.THRESH_BINARY_INV)
cv2.imshow('binary',img)
#水平投影
H = getHProjection(img)
通过上面的水平投影,根据其白色小山峰的起始位置就可以界定出每一行的起始位置,从而把每一行分割出来。
获得每一行图像之后,可以对其进行垂直投影
def getVProjection(image):
vProjection = np.zeros(image.shape,np.uint8);
#图像高与宽
(h,w) = image.shape
#长度与图像宽度一致的数组
w_ = [0]*w
#循环统计每一列白色像素的个数
for x in range(w):
for y in range(h):
if image[y,x] == 255:
w_[x]+=1
#绘制垂直平投影图像
for x in range(w):
for y in range(h-w_[x],h):
vProjection[y,x] = 255
cv2.imshow('vProjection',vProjection)
return w_
通过垂直投影可以获得每一个字符左右的起始位置,这样也就可以获得到每一个字符的具体坐标位置,即一个矩形框的位置。
下面是实现的全部代码:
import cv2
import numpy as np '''水平投影'''
def getHProjection(image):
hProjection = np.zeros(image.shape,np.uint8)
#图像高与宽
(h,w)=image.shape
#长度与图像高度一致的数组
h_ = [0]*h
#循环统计每一行白色像素的个数
for y in range(h):
for x in range(w):
if image[y,x] == 255:
h_[y]+=1
#绘制水平投影图像
for y in range(h):
for x in range(h_[y]):
hProjection[y,x] = 255
cv2.imshow('hProjection2',hProjection) return h_ def getVProjection(image):
vProjection = np.zeros(image.shape,np.uint8);
#图像高与宽
(h,w) = image.shape
#长度与图像宽度一致的数组
w_ = [0]*w
#循环统计每一列白色像素的个数
for x in range(w):
for y in range(h):
if image[y,x] == 255:
w_[x]+=1
#绘制垂直平投影图像
for x in range(w):
for y in range(h-w_[x],h):
vProjection[y,x] = 255
#cv2.imshow('vProjection',vProjection)
return w_ if __name__ == "__main__":
#读入原始图像
origineImage = cv2.imread('test.jpg')
# 图像灰度化
#image = cv2.imread('test.jpg',0)
image = cv2.cvtColor(origineImage,cv2.COLOR_BGR2GRAY)
cv2.imshow('gray',image)
# 将图片二值化
retval, img = cv2.threshold(image,127,255,cv2.THRESH_BINARY_INV)
cv2.imshow('binary',img)
#图像高与宽
(h,w)=img.shape
Position = []
#水平投影
H = getHProjection(img) start = 0
H_Start = []
H_End = []
#根据水平投影获取垂直分割位置
for i in range(len(H)):
if H[i] > 0 and start ==0:
H_Start.append(i)
start = 1
if H[i] <= 0 and start == 1:
H_End.append(i)
start = 0
#分割行,分割之后再进行列分割并保存分割位置
for i in range(len(H_Start)):
#获取行图像
cropImg = img[H_Start[i]:H_End[i], 0:w]
#cv2.imshow('cropImg',cropImg)
#对行图像进行垂直投影
W = getVProjection(cropImg)
Wstart = 0
Wend = 0
W_Start = 0
W_End = 0
for j in range(len(W)):
if W[j] > 0 and Wstart ==0:
W_Start =j
Wstart = 1
Wend=0
if W[j] <= 0 and Wstart == 1:
W_End =j
Wstart = 0
Wend=1
if Wend == 1:
Position.append([W_Start,H_Start[i],W_End,H_End[i]])
Wend =0
#根据确定的位置分割字符
for m in range(len(Position)):
cv2.rectangle(origineImage, (Position[m][0],Position[m][1]), (Position[m][2],Position[m][3]), (0 ,229 ,238), 1)
cv2.imshow('image',origineImage)
cv2.waitKey(0)
从分割的结果上看,基本上实现了图片中文字的分割。但由于中文结构复杂性,对于一些文字的分割并不理想,比如“叶”、“桃”等字会出现过度分割现象;对于有粘连的两个字会出现分割不够的现象,比如上图中的“念想”。不过可以从图像预处理(腐蚀),边界判断阈值的调整等方面进行优化。
Python + opencv 实现图片文字的分割的更多相关文章
- Python+OpenCV竖版古籍文字分割
在做图片文字分割的时候,常用的方法有两种.一种是投影法,适用于排版工整,字间距行间距比较宽裕的图像:还有一种是用OpenCV的轮廓检测,适用于文字不规则排列的图像. 1. 思路 一开始想偷个懒,直接用 ...
- python opencv show图片,debug技巧
debug的时候可以直接把图片画出来debug. imshow函数就是python opencv的展示图片的函数,第一个是你要起的图片名,第二个是图片本身.waitKey函数是用来展示图片多久的,默认 ...
- Python图像处理之图片文字识别(OCR)
OCR与Tesseract介绍 将图片翻译成文字一般被称为光学文字识别(Optical Character Recognition,OCR).可以实现OCR 的底层库并不多,目前很多库都是使用共同 ...
- python实现中文图片文字识别--OCR about chinese text--tesseract
0.我的环境: win7 32bits python 3.5 pycharm 5.0 1.相关库 安装pillow: pip install pillow 安装tesseract: tesseract ...
- python opencv 读取图片 返回图片某像素点的b,g,r值
转载:https://blog.csdn.net/weixin_41799483/article/details/80884682 #coding=utf-8 #读取图片 返回图片某像素点的b,g ...
- Python opencv resize图片并保存原有的图像比例
参考链接:https://www.jianshu.com/p/3092835eab61 现有的图像是高瘦高瘦的,所以直接resize成矩形不合适.改变了整个结构. 所以采用的是先resize再padd ...
- Python OpenCV 显示图片,图片分类
def divide_image(path,g_path1,g_path0): img_lst = os.listdir(path) for i in img_lst: print('类别1,类别0' ...
- 用 Python 和 OpenCV 检测图片上的条形码
用 Python 和 OpenCV 检测图片上的的条形码 这篇博文的目的是应用计算机视觉和图像处理技术,展示一个条形码检测的基本实现.我所实现的算法本质上基于StackOverflow 上的这个问 ...
- Python人工智能之图片识别,Python3一行代码实现图片文字识别
1.Python人工智能之图片识别,Python3一行代码实现图片文字识别 2.tesseract-ocr安装包和中文语言包 注意:
随机推荐
- React Native的APP打包教程
1.改软件的名称 2.改软件的图标 3.给做好的项目打成APP包 改软件的名称 找到项目的改名的位置 然后用记事本打开strings.xml,然后改自己想要的名字 改软件的图标 找到如下5个文件,然后 ...
- 关卡界面中个人信息随解锁关卡的移动(CocosCreator)
推荐阅读: 我的CSDN 我的博客园 QQ群:704621321 1.功能描述 在关卡很多的游戏里面,我们一般使用滑动来向玩家展示所有的关卡,为了清楚的让用户看到自己当前所在的关卡, ...
- IDEA-Maven项目的jdk版本设置
在 Intellij IDEA 中,我们需要设置 Settings 中的 Java Compiler 和 Project Structure 中的 Language Level 中的 jdk 版本为自 ...
- FineReport - 项目连接Oracle数据库
FineReport项目连接Oracle数据库 1:打开模板设计器,单击[服务器],选择[定义数据连接]: 2:单击[+],选择[JDBC]; 3:数据库选择[Oracle],驱动器选择[oracle ...
- mysql类似oracle rownum写法
rownum是oracle才有的写法,rownum在oracle中可以用于取第一条数据,或者批量写数据时限定批量写的数量等 mysql取第一条数据写法 SELECT * FROM t order by ...
- 牛客暑假多校第一场 J Different Integers
题意:给你一个数组, q次询问, 每次询问都会有1个[l, r] 求 区间[1,l] 和 [r, n] 中 数字的种类是多少. 解法1, 莫队暴力: 代码: #include<bits/stdc ...
- WEB-UI自动化测试实践
一.设计背景 随着IT行业的发展,产品愈渐复杂,web端业务及流程更加繁琐,目前UI测试仅是针对单一页面,操作量大.为了满足多页面功能及流程的需求及节省工时,设计了这款UI 自动化测试程序.旨在提供接 ...
- webstorm 突然不能用了?解决办法~
首先 感谢http://idea.lanyus.com 提供的试用方法,就在刚刚,webstorm突然就不能使了,http://idea.lanyus.com立马给出了解决办法,就是在hosts文 ...
- 单细胞转录组测序技术(scRNA-seq)及细胞分离技术分类汇总
单细胞测序流程(http://learn.gencore.bio.nyu.edu) 在过去的十多年里,高通量测序技术被广泛应用于生物和医学的各种领域,极大促进了相关的研究和应用.其中转录组测序(RNA ...
- 使用kubeadm方式安装K8S
Kubeadm安装 kubeadm是Kubernetes官方提供的用于快速安装Kubernetes集群的工具,伴随Kubernetes每个版本的发布都会同步更新,kubeadm会对集群配置方面的一些实 ...