.NET做人脸识别并分类

在游乐场、玻璃天桥、滑雪场等娱乐场所,经常能看到有摄影师在拍照片,令这些经营者发愁的一件事就是照片太多了,客户在成千上万张照片中找到自己可不是件容易的事。在一次游玩等活动或家庭聚会也同理,太多了照片导致挑选十分困难。

还好有.NET,只需少量代码,即可轻松找到人脸并完成分类。

本文将使用Microsoft Azure云提供的认知服务Cognitive ServicesAPI来识别并进行人脸分类,可以免费使用,注册地址是:https://portal.azure.com。注册完成后,会得到两个密钥,通过这个密钥即可完成本文中的所有代码,这个密钥长这个样子(非真实密钥):

fa3a7bfd807ccd6b17cf559ad584cbaa

使用方法

首先安装NuGetMicrosoft.Azure.CognitiveServices.Vision.Face,目前最新版是2.5.0-preview.1,然后创建一个FaceClient

string key = "fa3a7bfd807ccd6b17cf559ad584cbaa"; // 替换为你的key
using var fc = new FaceClient(new ApiKeyServiceClientCredentials(key))
{
Endpoint = "https://southeastasia.api.cognitive.microsoft.com",
};

然后识别一张照片:

using var file = File.OpenRead(@"C:\Photos\DSC_996ICU.JPG");
IList<DetectedFace> faces = await fc.Face.DetectWithStreamAsync(file);

其中返回的faces是一个IList结构,很显然一次可以识别出多个人脸,其中一个示例返回结果如下(已转换为JSON):

[
{
"FaceId": "9997b64e-6e62-4424-88b5-f4780d3767c6",
"RecognitionModel": null,
"FaceRectangle": {
"Width": 174,
"Height": 174,
"Left": 62,
"Top": 559
},
"FaceLandmarks": null,
"FaceAttributes": null
},
{
"FaceId": "8793b251-8cc8-45c5-ab68-e7c9064c4cfd",
"RecognitionModel": null,
"FaceRectangle": {
"Width": 152,
"Height": 152,
"Left": 775,
"Top": 580
},
"FaceLandmarks": null,
"FaceAttributes": null
}
]

可见,该照片返回了两个DetectedFace对象,它用FaceId保存了其Id,用于后续的识别,用FaceRectangle保存了其人脸的位置信息,可供对其做进一步操作。RecognitionModelFaceLandmarksFaceAttributes是一些额外属性,包括识别性别年龄表情等信息,默认不识别,如下图API所示,可以通过各种参数配置,非常好玩,有兴趣的可以试试:

最后,通过.GroupAsync来将之前识别出的多个faceId进行分类:

var faceIds = faces.Select(x => x.FaceId.Value).ToList();
GroupResult reslut = await fc.Face.GroupAsync(faceIds);

返回了一个GroupResult,其对象定义如下:

public class GroupResult
{
public IList<IList<Guid>> Groups
{
get;
set;
} public IList<Guid> MessyGroup
{
get;
set;
} // ...
}

包含了一个Groups对象和一个MessyGroup对象,其中Groups是一个数据的数据,用于存放人脸的分组,MessyGroup用于保存未能找到分组的FaceId

有了这个,就可以通过一小段简短的代码,将不同的人脸组,分别复制对应的文件夹中:

void CopyGroup(string outputPath, GroupResult result, Dictionary<Guid, (string file, DetectedFace face)> faces)
{
foreach (var item in result.Groups
.SelectMany((group, index) => group.Select(v => (faceId: v, index)))
.Select(x => (info: faces[x.faceId], i: x.index + 1)).Dump())
{
string dir = Path.Combine(outputPath, item.i.ToString());
Directory.CreateDirectory(dir);
File.Copy(item.info.file, Path.Combine(dir, Path.GetFileName(item.info.file)), overwrite: true);
} string messyFolder = Path.Combine(outputPath, "messy");
Directory.CreateDirectory(messyFolder);
foreach (var file in result.MessyGroup.Select(x => faces[x].file).Distinct())
{
File.Copy(file, Path.Combine(messyFolder, Path.GetFileName(file)), overwrite: true);
}
}

然后就能得到运行结果,如图,我传入了102张照片,输出了15个分组和一个“未找到队友”的分组:

还能有什么问题?

就两个API调用而已,代码一把梭,感觉太简单了?其实不然,还会有很多问题。

图片太大,需要压缩

毕竟要把图片上传到云服务中,如果上传网速不佳,流量会挺大,而且现在的手机、单反、微单都能轻松达到好几千万像素,jpg大小轻松上10MB,如果不压缩就上传,一来流量和速度遭不住。

二来……其实Azure也不支持,文档(https://docs.microsoft.com/en-us/rest/api/cognitiveservices/face/face/detectwithstream)显示,最大仅支持6MB的图片,且图片大小应不大于1920x1080的分辨率:

  • JPEG, PNG, GIF (the first frame), and BMP format are supported. The allowed image file size is from 1KB to 6MB.
  • The minimum detectable face size is 36x36 pixels in an image no larger than 1920x1080 pixels. Images with dimensions higher than 1920x1080 pixels will need a proportionally larger minimum face size.

因此,如果图片太大,必须进行一定的压缩(当然如果图片太小,显然也没必要进行压缩了),使用.NETBitmap,并结合C# 8.0switch expression,这个判断逻辑以及压缩代码可以一气呵成:

byte[] CompressImage(string image, int edgeLimit = 1920)
{
using var bmp = Bitmap.FromFile(image); using var resized = (1.0 * Math.Max(bmp.Width, bmp.Height) / edgeLimit) switch
{
var x when x > 1 => new Bitmap(bmp, new Size((int)(bmp.Size.Width / x), (int)(bmp.Size.Height / x))),
_ => bmp,
}; using var ms = new MemoryStream();
resized.Save(ms, ImageFormat.Jpeg);
return ms.ToArray();
}

竖立的照片

相机一般都是3:2的传感器,拍出来的照片一般都是横向的。但偶尔寻求一些构图的时候,我们也会选择纵向构图。虽然现在许多API都支持正负30度的侧脸,但竖着的脸API基本都是不支持的,如下图(实在找不到可以授权使用照片的模特了

.NET做人脸识别并分类的更多相关文章

  1. swift通过摄像头读取每一帧的图片,并且做识别做人脸识别

    最近帮别人做一个项目,主要是使用摄像头做人脸识别 github地址:https://github.com/qugang/AVCaptureVideoTemplate 要使用IOS的摄像头,需要使用AV ...

  2. Android 用虹软SDK做人脸识别

    人脸识别第三方sdk比较多,但是大多都是收费的或者限制次数什么的,虹软的效果还不错,全免费也不需要联网 V1.2版本使用和快速集成:https://www.jianshu.com/p/8dee89ec ...

  3. python 调用百度接口 做人脸识别

    操作步骤差不多,记得要在百度AIPI中的控制台中创建对应的工单 创建工单成功后 会生成两个key  这个两个key是要生成tokn 用 这里大家可以用 def函数 将token返回 供下面的接口使用 ...

  4. 人脸识别必读的N篇文章

    一,人脸检测/跟踪 人脸检测/跟踪的目的是在图像/视频中找到各个人脸所在的位置和大小:对于跟踪而言,还需要确定帧间不同人脸间的对应关系. 1, Robust Real-time Object Dete ...

  5. AdaBoost中利用Haar特征进行人脸识别算法分析与总结1——Haar特征与积分图

    原地址:http://blog.csdn.net/watkinsong/article/details/7631241 目前因为做人脸识别的一个小项目,用到了AdaBoost的人脸识别算法,因为在网上 ...

  6. face recognition[翻译][深度人脸识别:综述]

    这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领 ...

  7. Python的开源人脸识别库:离线识别率高达99.38%

    Python的开源人脸识别库:离线识别率高达99.38%   github源码:https://github.com/ageitgey/face_recognition#face-recognitio ...

  8. ng-深度学习-课程笔记-14: 人脸识别和风格迁移(Week4)

    1 什么是人脸识别( what is face recognition ) 在相关文献中经常会提到人脸验证(verification)和人脸识别(recognition). verification就 ...

  9. Cell期刊论文:为什么计算机人脸识别注定超越人类?(祖母论与还原论之争)

    终于找到ML日报的微信链接,抄之...................................... 请拜访原文链接:[祖母论与还原论之争]为什么计算机人脸识别注定超越人类?评价:       ...

随机推荐

  1. if-elif-else分支判断语句(附加continue和break)---举例说明

    一.分支循环语句: a=input("请输入一个五位数字") if(len(a)!=5): print("输入的数字不合格"); elif(a[0::]==a[ ...

  2. 题解 CF600E 【Lomsat gelral】

    没有多少人用莫队做吗? 蒟蒻水一波莫队 这是一道树上莫队好题. 时间复杂度(\(n\sqrt{n}logn\)) 蒟蒻过菜,不会去掉logn的做法qaq 思路很简单: 1.dfs跑一下树上点的dfs序 ...

  3. ESP8266开发之旅 网络篇① 认识一下Arduino Core For ESP8266

        博主的 ESP8266开发之旅 专栏主要分为三个部分: 基础篇 网络篇 应用篇     从这一篇开始,博主将会带领各位读者在基础篇的基础上进入网络的世界.在此,博主认为各位读者已经具备以下前提 ...

  4. POJO和JavaBean

    1.POJO POJO(Plain Ordinary Java Object):POJO就是一个简单的普通的Java对象,它不包含业务逻辑或持久逻辑等,但不是JavaBean.EntityBean等, ...

  5. rabbitmq学习-如何安装rabbitmq

    学习当然还是需要看官网地址的哈 官网地址 你可能会说老铁,看不懂英文咋办?我只能说各大翻译软件以及广大网友总有一款是你喜欢的 广大网友翻译的 中文文档 什么是rabbitmq? rabbitmq (R ...

  6. js静态属性,实例属性,封装性,prototype,__proto__综合解析

    原创作品,转载请注明来源,sogeisetsu,我的csdn上也有这篇文章csdn js静态属性,实例属性,封装性,prototype,__proto__综合解析 下面是我在写博客的源代码,您可以先不 ...

  7. RPA UiPath 官网视频

    RPA  UiPath 官网视频相关学习 有一些官网的截图翻译,本来打算把考试题也整理出来,结果没整,另附官网视频 RPA的好处: 广泛的自动化:跨越越来越多的行业,RPA加速在银行和金融,保险,医疗 ...

  8. 封装自己通用的 增删改查的方法 By EF

    封装自己的通用CURD By EF using System; using System.Collections.Generic; using System.Data.Entity; using Sy ...

  9. fenby C语言 P12

    条件语句的嵌套 注意格式对齐 #include <stdio.h> int main(){ int score=67; if(score<=100&&score> ...

  10. 深究1.8版本HashMap源码

    put方法 public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } 在putVal方法之 ...