.NET做人脸识别并分类

在游乐场、玻璃天桥、滑雪场等娱乐场所,经常能看到有摄影师在拍照片,令这些经营者发愁的一件事就是照片太多了,客户在成千上万张照片中找到自己可不是件容易的事。在一次游玩等活动或家庭聚会也同理,太多了照片导致挑选十分困难。

还好有.NET,只需少量代码,即可轻松找到人脸并完成分类。

本文将使用Microsoft Azure云提供的认知服务Cognitive ServicesAPI来识别并进行人脸分类,可以免费使用,注册地址是:https://portal.azure.com。注册完成后,会得到两个密钥,通过这个密钥即可完成本文中的所有代码,这个密钥长这个样子(非真实密钥):

fa3a7bfd807ccd6b17cf559ad584cbaa

使用方法

首先安装NuGetMicrosoft.Azure.CognitiveServices.Vision.Face,目前最新版是2.5.0-preview.1,然后创建一个FaceClient

string key = "fa3a7bfd807ccd6b17cf559ad584cbaa"; // 替换为你的key
using var fc = new FaceClient(new ApiKeyServiceClientCredentials(key))
{
Endpoint = "https://southeastasia.api.cognitive.microsoft.com",
};

然后识别一张照片:

using var file = File.OpenRead(@"C:\Photos\DSC_996ICU.JPG");
IList<DetectedFace> faces = await fc.Face.DetectWithStreamAsync(file);

其中返回的faces是一个IList结构,很显然一次可以识别出多个人脸,其中一个示例返回结果如下(已转换为JSON):

[
{
"FaceId": "9997b64e-6e62-4424-88b5-f4780d3767c6",
"RecognitionModel": null,
"FaceRectangle": {
"Width": 174,
"Height": 174,
"Left": 62,
"Top": 559
},
"FaceLandmarks": null,
"FaceAttributes": null
},
{
"FaceId": "8793b251-8cc8-45c5-ab68-e7c9064c4cfd",
"RecognitionModel": null,
"FaceRectangle": {
"Width": 152,
"Height": 152,
"Left": 775,
"Top": 580
},
"FaceLandmarks": null,
"FaceAttributes": null
}
]

可见,该照片返回了两个DetectedFace对象,它用FaceId保存了其Id,用于后续的识别,用FaceRectangle保存了其人脸的位置信息,可供对其做进一步操作。RecognitionModelFaceLandmarksFaceAttributes是一些额外属性,包括识别性别年龄表情等信息,默认不识别,如下图API所示,可以通过各种参数配置,非常好玩,有兴趣的可以试试:

最后,通过.GroupAsync来将之前识别出的多个faceId进行分类:

var faceIds = faces.Select(x => x.FaceId.Value).ToList();
GroupResult reslut = await fc.Face.GroupAsync(faceIds);

返回了一个GroupResult,其对象定义如下:

public class GroupResult
{
public IList<IList<Guid>> Groups
{
get;
set;
} public IList<Guid> MessyGroup
{
get;
set;
} // ...
}

包含了一个Groups对象和一个MessyGroup对象,其中Groups是一个数据的数据,用于存放人脸的分组,MessyGroup用于保存未能找到分组的FaceId

有了这个,就可以通过一小段简短的代码,将不同的人脸组,分别复制对应的文件夹中:

void CopyGroup(string outputPath, GroupResult result, Dictionary<Guid, (string file, DetectedFace face)> faces)
{
foreach (var item in result.Groups
.SelectMany((group, index) => group.Select(v => (faceId: v, index)))
.Select(x => (info: faces[x.faceId], i: x.index + 1)).Dump())
{
string dir = Path.Combine(outputPath, item.i.ToString());
Directory.CreateDirectory(dir);
File.Copy(item.info.file, Path.Combine(dir, Path.GetFileName(item.info.file)), overwrite: true);
} string messyFolder = Path.Combine(outputPath, "messy");
Directory.CreateDirectory(messyFolder);
foreach (var file in result.MessyGroup.Select(x => faces[x].file).Distinct())
{
File.Copy(file, Path.Combine(messyFolder, Path.GetFileName(file)), overwrite: true);
}
}

然后就能得到运行结果,如图,我传入了102张照片,输出了15个分组和一个“未找到队友”的分组:

还能有什么问题?

就两个API调用而已,代码一把梭,感觉太简单了?其实不然,还会有很多问题。

图片太大,需要压缩

毕竟要把图片上传到云服务中,如果上传网速不佳,流量会挺大,而且现在的手机、单反、微单都能轻松达到好几千万像素,jpg大小轻松上10MB,如果不压缩就上传,一来流量和速度遭不住。

二来……其实Azure也不支持,文档(https://docs.microsoft.com/en-us/rest/api/cognitiveservices/face/face/detectwithstream)显示,最大仅支持6MB的图片,且图片大小应不大于1920x1080的分辨率:

  • JPEG, PNG, GIF (the first frame), and BMP format are supported. The allowed image file size is from 1KB to 6MB.
  • The minimum detectable face size is 36x36 pixels in an image no larger than 1920x1080 pixels. Images with dimensions higher than 1920x1080 pixels will need a proportionally larger minimum face size.

因此,如果图片太大,必须进行一定的压缩(当然如果图片太小,显然也没必要进行压缩了),使用.NETBitmap,并结合C# 8.0switch expression,这个判断逻辑以及压缩代码可以一气呵成:

byte[] CompressImage(string image, int edgeLimit = 1920)
{
using var bmp = Bitmap.FromFile(image); using var resized = (1.0 * Math.Max(bmp.Width, bmp.Height) / edgeLimit) switch
{
var x when x > 1 => new Bitmap(bmp, new Size((int)(bmp.Size.Width / x), (int)(bmp.Size.Height / x))),
_ => bmp,
}; using var ms = new MemoryStream();
resized.Save(ms, ImageFormat.Jpeg);
return ms.ToArray();
}

竖立的照片

相机一般都是3:2的传感器,拍出来的照片一般都是横向的。但偶尔寻求一些构图的时候,我们也会选择纵向构图。虽然现在许多API都支持正负30度的侧脸,但竖着的脸API基本都是不支持的,如下图(实在找不到可以授权使用照片的模特了

.NET做人脸识别并分类的更多相关文章

  1. swift通过摄像头读取每一帧的图片,并且做识别做人脸识别

    最近帮别人做一个项目,主要是使用摄像头做人脸识别 github地址:https://github.com/qugang/AVCaptureVideoTemplate 要使用IOS的摄像头,需要使用AV ...

  2. Android 用虹软SDK做人脸识别

    人脸识别第三方sdk比较多,但是大多都是收费的或者限制次数什么的,虹软的效果还不错,全免费也不需要联网 V1.2版本使用和快速集成:https://www.jianshu.com/p/8dee89ec ...

  3. python 调用百度接口 做人脸识别

    操作步骤差不多,记得要在百度AIPI中的控制台中创建对应的工单 创建工单成功后 会生成两个key  这个两个key是要生成tokn 用 这里大家可以用 def函数 将token返回 供下面的接口使用 ...

  4. 人脸识别必读的N篇文章

    一,人脸检测/跟踪 人脸检测/跟踪的目的是在图像/视频中找到各个人脸所在的位置和大小:对于跟踪而言,还需要确定帧间不同人脸间的对应关系. 1, Robust Real-time Object Dete ...

  5. AdaBoost中利用Haar特征进行人脸识别算法分析与总结1——Haar特征与积分图

    原地址:http://blog.csdn.net/watkinsong/article/details/7631241 目前因为做人脸识别的一个小项目,用到了AdaBoost的人脸识别算法,因为在网上 ...

  6. face recognition[翻译][深度人脸识别:综述]

    这里翻译下<Deep face recognition: a survey v4>. 1 引言 由于它的非侵入性和自然特征,人脸识别已经成为身份识别中重要的生物认证技术,也已经应用到许多领 ...

  7. Python的开源人脸识别库:离线识别率高达99.38%

    Python的开源人脸识别库:离线识别率高达99.38%   github源码:https://github.com/ageitgey/face_recognition#face-recognitio ...

  8. ng-深度学习-课程笔记-14: 人脸识别和风格迁移(Week4)

    1 什么是人脸识别( what is face recognition ) 在相关文献中经常会提到人脸验证(verification)和人脸识别(recognition). verification就 ...

  9. Cell期刊论文:为什么计算机人脸识别注定超越人类?(祖母论与还原论之争)

    终于找到ML日报的微信链接,抄之...................................... 请拜访原文链接:[祖母论与还原论之争]为什么计算机人脸识别注定超越人类?评价:       ...

随机推荐

  1. i春秋DMZ大型靶场实验(二)提权漏洞

    拿到靶场 直接进行扫描 爆破路径 发现 phpinfo, phpmyadmin  更具phpinfo 获取跟路径  也可以通过 输入错路径爆出绝对路径 phpmyamin  弱口令登录  root,r ...

  2. 罕见的coredump了

    最近,项目在越南版删档测试的时候,发生了罕见的coredump,简单记一点排查日志 目前的敏感词过滤是在C层做判定的,先后经过几个项目考验,模块算是比较稳定了.越南版有个需求,需要将敏感词里的空格去掉 ...

  3. leetcode 刷500道题,笔试/面试稳过吗?谈一谈这些年来算法的学习

    想要学习算法.应付笔试或者应付面试手撕算法题,相信大部分人都会去刷 Leetcode,有读者问?如果我在 leetcode 坚持刷它个 500 道题,以后笔试/面试稳吗? 这里我说下我的个人看法,我认 ...

  4. ESP8266开发之旅 基础篇① 走进ESP8266的世界

    授人以鱼不如授人以渔,目的不是为了教会你具体项目开发,而是学会学习的能力.希望大家分享给你周边需要的朋友或者同学,说不定大神成长之路有博哥的奠基石... QQ技术互动交流群:ESP8266&3 ...

  5. JavaWeb 如何防止表单重复提交 - 使用Token,令牌

    JavaWeb 如何防止表单重复提交 - 使用Token,令牌 说到重复提交 ,应该想到两种场景:1. 在下单,或者支付 这种情况 那么不允许  刷新,不允许后退再点击提交(后退之后提交会失败,修改了 ...

  6. mysql慢日志分析组件安装

    1.pt-query-digest 安装 cd /usr/bin wget percona.com/get/pt-query-digest chmod u+x pt-query-digest yum ...

  7. unity 开启外部摄像头

    在unity中建立一个image作为摄像头显示画面,然后通过命令render到image上即可. public WebCamTexture webTex; public string deviceNa ...

  8. SpringCloud之Feign和Ribbon的选择(五)

    Ribbon Ribbon 是一个基于 HTTP 和 TCP 客户端的负载均衡器它可以在客户端配置 ribbonServerList(服务端列表),然后轮询请求以实现均衡负载它在联合 Eureka 使 ...

  9. python小练习--模拟用户登录,(3次重试机会,登录成功展示登录账号密码)

    知识点使用:1.格式化输出的两种方法---% .formate 2.while循环的使用,及跳出循环的两种方法---break(跳出循环体).continue(结束本次循环,继续下次循环) 3.if条 ...

  10. Net Core中 使用Middleware 实现反向代理

    有这样的一个需求,我们要拦截某些特定的请求,并将它们重新定向到另一台服务器中,然而客户端并不知情. 在NetCore中我们可以用中间件来实现, 首先创建项目: 我这里只有2.1 Version 的 添 ...