Note | PyTorch
PyTorch随手记
Note:
官方书籍:Deep learning with PyTorch。
1. 模型操作
假设我们有一个用self.arcnn = nn.Sequential(...)定义并训练好的ARCNN模型。我们想迁移过来,冻结前几层再训练。分两步:
print(model.state_dict())查看名称,如'arcnn.12.bias', 'arcnn.12.weight'等。model.arcnn[0].weight.requires_grad = False,model.arcnn[0].bias.requires_grad = False,让第一层冻结。
2. 网络设计
卷积图示
填充(padding)
PyTorch和TensorFlow的填充规则是不同的。因此必须查阅官方文档。
如果y = F.pad(x, (1,2,3,4)),意思是:在\(x\)的最后一个维度上(一般是W),左边填一圈零,右边填两圈0(默认为0);在\(x\)的倒数第二个维度上(一般是H),上面填3圈零,下面填4圈零。
升采样
其中有一个参数align_corners。例子参见官方教程里的Example。
这里有一个图例:

全连接层
假设我们经过多层卷积,得到了\((128, 32, 4, 4)\)的通道,即batch size为128,32张特征图,通道尺寸为\(4 \times 4\)。我们希望基于此得到2分类。那么可以如下操作:
self.l1 = nn.Linear(32 * 4 * 4, 128)
self.l2 = nn.Linear(128, 32)
self.l3 = nn.Linear(32, 2)
x = x.view(-1, 32 * 4 * 4)
x = self.l1(x)
x = self.l2(x)
x = self.l3(x)
关于交叉熵和softmax,参见损失函数。
3. 损失函数
交叉熵
loss_func = F.cross_entropy
batch_pred_t = model(batch_cmp_t)
batch_pred = batch_pred_t.detach().cpu()
acc = cal_acc(batch_pred, batch_label)
def cal_acc(batch_pred, batch_label):
batch_pred = [torch.argmax(batch_pred[ite_patch]) for ite_patch in range(batch_size)]
acc = 0
for ite_patch in range(batch_size):
if pred[ite_patch] == batch_label[ite_patch]:
acc += 1
acc /= batch_size
return acc
注意:
cross_entropy函数结合了nn.LogSoftmax()和nn.NLLLoss()。第二个参数是
target。假设batch size是32,那么就是一个32维向量(张量),值为从0开始的正确标签。第一个参数是
input,可以没有被softmax归一化。假设batch size是32,一共有5个分类,那么就是一个\(32 \times 5\)的张量。
4. 系统或环境交互
模型加载
自动搜索空余显存最多的GPU,然后将模型加载到该GPU上:
os.system('nvidia-smi -q -d Memory |grep -A4 GPU|grep Free >tmp')
memory_gpu=[int(x.split()[2]) for x in open('tmp','r').readlines()]
dev = torch.device("cuda:" + str(np.argmax(memory_gpu)))
print(dev)
model.load_state_dict(torch.load(os.path.join(dir_model, "model_" + str(index_model) + ".pt"), map_location=dev))
model.to(dev)
5. 犯过的错误
损失异常
- CNN最后一层使用了非线性激活函数ReLU,导致输出在0附近浮动。
测试显存过大
在测试程序中指定了torch.no_grad(),然而显存还是过大。后来改成with torch.no_grad():包裹测试程序,成功了。
Note | PyTorch的更多相关文章
- Note | PyTorch官方教程学习笔记
目录 1. 快速入门PYTORCH 1.1. 什么是PyTorch 1.1.1. 基础概念 1.1.2. 与NumPy之间的桥梁 1.2. Autograd: Automatic Differenti ...
- 理解PyTorch的自动微分机制
参考Getting Started with PyTorch Part 1: Understanding how Automatic Differentiation works 非常好的文章,讲解的非 ...
- 基于pytorch的CNN、LSTM神经网络模型调参小结
(Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM. ...
- PyTorch官方中文文档:torch.nn
torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom ...
- pytorch对可变长度序列的处理
主要是用函数torch.nn.utils.rnn.PackedSequence()和torch.nn.utils.rnn.pack_padded_sequence()以及torch.nn.utils. ...
- pytorch .detach() .detach_() 和 .data用于切断反向传播
参考:https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-autograd/#detachsource 当我们再训 ...
- 一文看懂Transformer内部原理(含PyTorch实现)
Transformer注解及PyTorch实现 原文:http://nlp.seas.harvard.edu/2018/04/03/attention.html 作者:Alexander Rush 转 ...
- [转] 理解CheckPoint及其在Tensorflow & Keras & Pytorch中的使用
作者用游戏的暂停与继续聊明白了checkpoint的作用,在三种主流框架中演示实际使用场景,手动点赞. 转自:https://blog.floydhub.com/checkpointing-tutor ...
- pytorch做seq2seq注意力模型的翻译
以下是对pytorch 1.0版本 的seq2seq+注意力模型做法语--英语翻译的理解(这个代码在pytorch0.4上也可以正常跑): # -*- coding: utf-8 -*- " ...
随机推荐
- 创建windows服务方法
将exe程序创建windows服务 sc create TestService binpath= "c:/in estapp.exe" displayname= "Tes ...
- UOJ #450. 【集训队作业2018】复读机
前置知识单位根反演自己去浅谈单位根反演看(此外可能需要一定的生成函数的姿势) 首先一看\(d\)这么小,那我们来分类讨论一下吧 当\(d=1\)时,显然答案就是\(k^n\) 当\(d=2\)时,如果 ...
- js实现addClass方法,classList与className有什么区别?
壹 ❀ 引 Jquery中addClass与removeClass是两个使用高频的方法,对于为dom元素增删class类非常方便:但如果不用JQ,使用js怎么模拟它们呢?本文主要记录下自己的实现思路 ...
- 【OCR技术系列之二】文字定位于切割
要做文字识别,第一步要考虑的就是怎么将每一个字符从图片中切割下来,然后才可以送入我们设计好的模型进行字符识别.现在就以下面这张图片为例,说一说最一般的字符切割的步骤是哪些. 当然,我们实际上要识别的图 ...
- 参数检查(@property)
绑定属性时,如果直接把属性暴露出去,虽然写起来很简单,但无法对参数进行检查,导致属性被随便修改 因此,可以通过在类内定义get()获取属性值,定义set()对属性值进行设定并对设定值进行检查 但通过定 ...
- linux的vi编辑器常用用法一览
vi 命令用于编辑文本文件,语法: vi 文件名 vi 是一个比较强大的编辑工具,类似于windows下的notepad,但是功能要强大的多.vi分为三种模式,分别是“一般模式”,“编辑模式”,“命令 ...
- PHP fastcgi_finish_request 方法
本文介绍,PHP运行在FastCGI模式时,FPM提供的方法:fastcgi_finish_request. 在说这个方法之前,我们先了解PHP有哪些常用的运行模式? PHP运行模式 CGI 通用网关 ...
- 【CF1172E】Nauuo and ODT(Link-Cut Tree)
[CF1172E]Nauuo and ODT(Link-Cut Tree) 题面 CF 给你一棵树,每个节点有一个颜色. 定义一条路径的权值为路径上不同颜色的数量.求所有有向路径的权值和. 有\(m\ ...
- Linux - 几种方法来实现scp拷贝时无需输入密码
前言 在实际工作中,经常会将本地的一些文件传送到远程的机器上.scp是一个很好用的命令,缺点是需要手工输入密码. 如何在shell脚本中实现传输文件,而不用手工输入密码呢?接下来介绍三种方法. 一.建 ...
- 垃圾分类环保宣传 PPT模板
模板来源:http://ppt.dede58.com/peixunyanjiang/26263.html