PyTorch随手记

Note:

1. 模型操作

假设我们有一个用self.arcnn = nn.Sequential(...)定义并训练好的ARCNN模型。我们想迁移过来,冻结前几层再训练。分两步:

  1. print(model.state_dict())查看名称,如'arcnn.12.bias', 'arcnn.12.weight'等。

  2. model.arcnn[0].weight.requires_grad = Falsemodel.arcnn[0].bias.requires_grad = False,让第一层冻结。

2. 网络设计

卷积图示

GitHub

填充(padding)

PyTorch和TensorFlow的填充规则是不同的。因此必须查阅官方文档

如果y = F.pad(x, (1,2,3,4)),意思是:在\(x\)的最后一个维度上(一般是W),左边填一圈零,右边填两圈0(默认为0);在\(x\)的倒数第二个维度上(一般是H),上面填3圈零,下面填4圈零。

升采样

其中有一个参数align_corners。例子参见官方教程里的Example

这里有一个图例:

全连接层

假设我们经过多层卷积,得到了\((128, 32, 4, 4)\)的通道,即batch size为128,32张特征图,通道尺寸为\(4 \times 4\)。我们希望基于此得到2分类。那么可以如下操作:

self.l1 = nn.Linear(32 * 4 * 4, 128)
self.l2 = nn.Linear(128, 32)
self.l3 = nn.Linear(32, 2) x = x.view(-1, 32 * 4 * 4)
x = self.l1(x)
x = self.l2(x)
x = self.l3(x)

关于交叉熵和softmax,参见损失函数。

3. 损失函数

交叉熵

loss_func = F.cross_entropy

batch_pred_t = model(batch_cmp_t)
batch_pred = batch_pred_t.detach().cpu()
acc = cal_acc(batch_pred, batch_label) def cal_acc(batch_pred, batch_label): batch_pred = [torch.argmax(batch_pred[ite_patch]) for ite_patch in range(batch_size)] acc = 0
for ite_patch in range(batch_size):
if pred[ite_patch] == batch_label[ite_patch]:
acc += 1
acc /= batch_size return acc

注意:

  • cross_entropy函数结合了nn.LogSoftmax()nn.NLLLoss()

  • 第二个参数是target。假设batch size是32,那么就是一个32维向量(张量),值为从0开始的正确标签。

  • 第一个参数是input,可以没有被softmax归一化。假设batch size是32,一共有5个分类,那么就是一个\(32 \times 5\)的张量。

4. 系统或环境交互

模型加载

自动搜索空余显存最多的GPU,然后将模型加载到该GPU上:

os.system('nvidia-smi -q -d Memory |grep -A4 GPU|grep Free >tmp')
memory_gpu=[int(x.split()[2]) for x in open('tmp','r').readlines()]
dev = torch.device("cuda:" + str(np.argmax(memory_gpu)))
print(dev) model.load_state_dict(torch.load(os.path.join(dir_model, "model_" + str(index_model) + ".pt"), map_location=dev))
model.to(dev)

5. 犯过的错误

损失异常

  • CNN最后一层使用了非线性激活函数ReLU,导致输出在0附近浮动。

测试显存过大

在测试程序中指定了torch.no_grad(),然而显存还是过大。后来改成with torch.no_grad():包裹测试程序,成功了。

Note | PyTorch的更多相关文章

  1. Note | PyTorch官方教程学习笔记

    目录 1. 快速入门PYTORCH 1.1. 什么是PyTorch 1.1.1. 基础概念 1.1.2. 与NumPy之间的桥梁 1.2. Autograd: Automatic Differenti ...

  2. 理解PyTorch的自动微分机制

    参考Getting Started with PyTorch Part 1: Understanding how Automatic Differentiation works 非常好的文章,讲解的非 ...

  3. 基于pytorch的CNN、LSTM神经网络模型调参小结

    (Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM. ...

  4. PyTorch官方中文文档:torch.nn

    torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom ...

  5. pytorch对可变长度序列的处理

    主要是用函数torch.nn.utils.rnn.PackedSequence()和torch.nn.utils.rnn.pack_padded_sequence()以及torch.nn.utils. ...

  6. pytorch .detach() .detach_() 和 .data用于切断反向传播

    参考:https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-autograd/#detachsource 当我们再训 ...

  7. 一文看懂Transformer内部原理(含PyTorch实现)

    Transformer注解及PyTorch实现 原文:http://nlp.seas.harvard.edu/2018/04/03/attention.html 作者:Alexander Rush 转 ...

  8. [转] 理解CheckPoint及其在Tensorflow & Keras & Pytorch中的使用

    作者用游戏的暂停与继续聊明白了checkpoint的作用,在三种主流框架中演示实际使用场景,手动点赞. 转自:https://blog.floydhub.com/checkpointing-tutor ...

  9. pytorch做seq2seq注意力模型的翻译

    以下是对pytorch 1.0版本 的seq2seq+注意力模型做法语--英语翻译的理解(这个代码在pytorch0.4上也可以正常跑): # -*- coding: utf-8 -*- " ...

随机推荐

  1. git必知必会

    1. Git 配置 --system #系统级别--global #用户全局--local #单独一个项目 git config --global user.name "xxxx" ...

  2. Vs Code 2019软件安装教程及常用的入门设置

    小编认为VsCode是一款非常好用的编辑器,插件丰富,支持的语言种类非常多.我所使用VsCode主要打一些前端的代码,自己感觉very good. 点击运行. 按图所示操作. 安装教程很简单的,主要是 ...

  3. IT兄弟连 Java语法教程 数据类型2

    整型 Java定义了4种整数类型:byte.short.int和long.所有这些类型都是有符号的.正或负的整数.Java不支持无符号的.只是正值的整数.许多其它计算机语言同时支持有符号和无符号整数. ...

  4. Java正则表达式验证IP,邮箱,电话

     引言     java中我们会常用一些判断如IP.电子邮箱.电话号码的是不是合法,那么我们怎么来判断呢,答案就是利用正则表达式来判断了,废话不多说,下面就是上代码. 1:判断是否是正确的IP  1 ...

  5. Docker开启Remote API 访问 2375端口

    Docker常见端口 我看到的常见docker端口包括: 2375:未加密的docker socket,远程root无密码访问主机2376:tls加密套接字,很可能这是您的CI服务器4243端口作为h ...

  6. python基础(31):进程(一)

    1. 什么是进程 进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础.在早期面向进程设计的计算机结构中,进程是程序的基本执行 ...

  7. Python中的函数参数有冒号 声明后有-> 箭头

    在python3.7 环境下 函数声明时能在参数后加冒号,如图: def f(ham: str, eggs: str = 'eggs') -> str : print("Annotat ...

  8. 配置VS Code+React开发环境

    1.安装node+npm 2.安装VS Code 3.选择工作区文件夹——右键点击在终端中打开 4.按照Using React in Visual Studio Code的文档进行操作 npm ins ...

  9. 【转载】Gradle for Android 第四篇( 构建变体 )

    当你在开发一个app,通常你会有几个版本.大多数情况是你需要一个开发版本,用来测试app和弄清它的质量,然后还需要一个生产版本.这些版本通常有不同的设置,例如不同的URL地址.更可能的是你可能需要一个 ...

  10. android ANR 分析定位问题

    ANR ? android 规定,Activity如果5秒钟之内无法响应屏幕触摸事件或者键盘输入事件,BroadcastReceiver 如果10s中之内还未执行完操作就会出现ANR 定位ANR问题 ...