$f(n)=\sum\limits_{i=0}^{n} \sum\limits_{j=0}^{i} S(i,j) \times 2^j \times j!$

其中$S(i,j)$为第二类斯特林数,公式为$S(i,j)=\frac{1}{j!} \sum\limits_{k=0}^{j} (-1)^k C(j,k) (j-k)^i$

求$f(n)$,$n<=100000$,答案对$998244353(=2^{23} \times 7 \times 17 + 1)$取模

$f(n)=\sum\limits_{i=0}^{n} \sum\limits_{j=0}^{i} 2^j \times \sum\limits_{k=0}^{j} (-1)^k \times \frac{j!}{k! \times (j-k)!} \times (j-k)^i$

$=\sum\limits_{i=0}^{n} \sum\limits_{j=0}^{i} 2^j \times j! \times \sum\limits_{k=0}^{j} \frac{(j-k)^i}{(j-k)!} \times \frac{(-1)^k}{k!}$

$=\sum\limits_{j=0}^{n} 2^j \times j! \times \sum\limits_{k=0}^{j} \frac{\sum\limits_{i=0}^{n}(j-k)^i}{(j-k)!} \times \frac{(-1)^k}{k!}$

可以发现,$\sum\limits_{i=0}^{n}(j-k)^i$项就是一个等比数列求和,可以快速幂求出。

那么两个分数分别只与j-k和k有关了,相乘的话,就是卷积形式FFT求出,枚举最外层j即可。

Update10/04:

终于抽出时间码完啦,少打了一个等号调了半天~

 #include<cstdio>
#define mod 998244353
#define int long long
int rev[],bin=,n,fac[],inv[],invv[],INV,sumpw[];
int a[],b[],sum;
int pow(int b,int t,int a=){for(;t;t>>=,b=b*b%mod)if(t&)a=a*b%mod;return a;}
void NTT(int *a,int opt){
for(int i=;i<bin;++i)if(i<rev[i])a[i]^=a[rev[i]]^=a[i]^=a[rev[i]];
for(int mid=,wn=pow(,mod->>);mid<bin;mid<<=,wn=pow(,(mod-)//mid*opt+mod-))
for(int i=;i<bin;i+=mid<<)
for(int j=,w=;j<mid;++j,w=w*wn%mod){
int x=a[i+j],y=a[i+j+mid]*w%mod;
a[i+j]=(x+y)%mod;a[i+j+mid]=(mod+x-y)%mod;
}
if(opt==-)for(int i=;i<bin;++i)a[i]=a[i]*INV%mod;
}
main(){
scanf("%lld",&n);
while(bin<=n<<)bin<<=;//printf("%lld\n",bin);
for(int i=;i<bin;++i)rev[i]=rev[i>>]>>|(i&)*bin>>;
INV=pow(bin,mod-);
fac[]=inv[]=invv[]=fac[]=inv[]=sumpw[]=;
for(int i=;i<=n;++i)fac[i]=fac[i-]*i%mod,invv[i]=-mod/i*invv[mod%i]%mod+mod,inv[i]=inv[i-]*invv[i]%mod;
sumpw[]=n+;for(int i=;i<=n;++i)sumpw[i]=(pow(i,n+)-)*invv[i-]%mod;
for(int i=;i<=n;++i)a[i]=sumpw[i]*inv[i]%mod,b[i]=pow(mod-,i)*inv[i]%mod;//,printf("%lld %lld\n",a[i],b[i]);
NTT(a,);NTT(b,);
for(int i=;i<bin;++i)a[i]=a[i]*b[i]%mod;
NTT(a,-);//for(int i=0;i<bin;++i)printf("%lld\n",a[i]);
for(int j=;j<=n;++j)sum=(sum+pow(,j)*fac[j]%mod*a[j])%mod;
printf("%lld\n",sum);
}

求和:fft,表达式化简的更多相关文章

  1. B/b.cpp:表达式化简,二分答案

    不知道能不能粘题面于是不粘了. 首先声明这道题可以怎么水过: 随机化几万次操作,取最优答案. 暴力O(n2log n)可过. 不想打正解的可以走了. emm然而我的应该是正解,O(n log n). ...

  2. 【mongoDB高级篇②】大数据聚集运算之mapReduce(映射化简)

    简述 mapReduce从字面上来理解就是两个过程:map映射以及reduce化简.是一种比较先进的大数据处理方法,其难度不高,从性能上来说属于比较暴力的(通过N台服务器同时来计算),但相较于grou ...

  3. HDU.2503 a/b + c/d (分式化简)

    a/b + c/d Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Sub ...

  4. F. Anton and School 位运算 + 化简

    http://codeforces.com/contest/734/problem/F 因为 x + y = (x & y) + (x | y) 有了这个公式后,然后应该手动模拟一下,把公式化 ...

  5. matlab化简符号表达式

    化简符号表达式计算机毕竟还是挺笨的, 经过一系列的符号计算后, 得到的结果可能只有它自己才能看懂, Matlab提供大量函数以用于符号表达式的化简. collect(f): 函数用途是合并多项式中相同 ...

  6. NOIP201402比例化简

    比例化简 [问题描述]在社交媒体上,经常会看到针对某一个观点同意与否的民意调查以及结果.例如,对某一观点表示支持的有 1498 人,反对的有 902 人,那么赞同与反对的比例可以简单的记为1498:9 ...

  7. YZOI Easy Round 2_化简(simplify.c/cpp/pas)

    Description 给定一个多项式,输出其化简后的结果. Input 一个字符串,只含有关于字母x 的多项式,不含括号与分式,没有多余的空格. Output 一个字符串,化简后的多项式,按照次数从 ...

  8. 化简复杂逻辑,编写紧凑的if条件语句

    当业务逻辑很复杂,涉及多个条件的真假,或者多种条件下都会执行同一动作时,如何编写紧凑的if语句呢?本文借由一个实际例子,利用数学的布尔逻辑整理条件,最终产生if语句. 问题 在<X3 重聚> ...

  9. 《Linear Algebra and Its Application》-chaper1-行化简法解决线性方程组

    在实际生产生活中,需要我们解大量的线性方程组,例如是有探测.线性规划.电路等,这里我们便从理论角度建立一套解决线性方程组的体系. 线性方程组: 形如下面形式的方程组称为线性方程组. 回想起解决二元线性 ...

随机推荐

  1. ELK 学习笔记之 Logstash之inputs配置

    Logstash之inputs配置: input plugin doc: https://www.elastic.co/guide/en/logstash/current/index.html 插件很 ...

  2. 如何写md格式的文档

    一.标题 标题其实和HTML中的h系列很像,想要设置为标题的文字前面加#来表示一个#是一级标题,二个#是二级标题,以此类推.支持六级标题. 注:标准语法一般在#后跟个空格再写文字, 示例: 效果如下: ...

  3. 戈多编程-小谈sql语句的优化分析

    在sqlserver大数据查询中,避免不了查询效率减慢,暂且抛弃硬件原因和版本原因,仅从sql语句角度分析. 一. sql 语句性能不达标,主要原因有一下几点: 1. 未建索引,检索导致全表扫描 2. ...

  4. Kubernetes+Docker+Istio 容器云实践

    随着社会的进步与技术的发展,人们对资源的高效利用有了更为迫切的需求.近年来,互联网.移动互联网的高速发展与成熟,大应用的微服务化也引起了企业的热情关注,而基于Kubernetes+Docker的容器云 ...

  5. Java 语言的发展史

    维基百科引入 早期的Java 语言最开始只是Sun计算机(Sun MicroSystems)公司在1990年12月开始研究的一个内部项目.Sun计算机公司的一个叫做帕特里克·诺顿的工程师被公司自己开发 ...

  6. Windows 8.1硬盘安装Ubuntu 14.04双系统参考教程及多硬盘注意事项

    本文来自:http://www.linuxidc.com/Linux/2015-08/122140.htm,此处仅做收藏. Windows 8.1硬盘安装Ubuntu 14.04双系统参考教程及多硬盘 ...

  7. 云计算之走进LINUX(二)

    引言 * 第二部分  云计算应用管理 [Shell脚本基础] [使用变量] [条件测试及选择] [列表式循环] [系统安全保护] [配置用户环境] [防火墙策略管理] [ISCSI共享存储] [数据库 ...

  8. selenium3与Python3实战 web自动化测试框架 ☝☝☝

    selenium3与Python3实战 web自动化测试框架 selenium3与Python3实战 web自动化测试框架 学习 教程 一.环境搭建 1.selenium环境搭建 Client: py ...

  9. Jsoup-解析HTML工具(简单爬虫工具)

    Jsoup-解析HTML工具(简单爬虫工具) 一.简介 ​ jsoup 是一款Java 的HTML解析器,可直接解析某个URL地址.HTML文本内容.它提供了一套非常省力的API,可通过DOM,CSS ...

  10. 算法---区间K大数查找 Java 蓝桥杯ALGO-1

    import java.util.Arrays; import java.util.Scanner; public class Main { public static void main(Strin ...