从12345这个数字中挑选出三个数共有十种方式:

\[123, 124, 125, 134, 135, 145, 234, 235, 245,345
\]

在组合学中,我们将其记为\(C(5,3)=10\)。一般地:

\[C(n,r)=\frac{n!}{r!(n-r)!},\ where\ r\le n
\]

其中\(n!=n\times(n-1)\times\cdots\times3\times2\times1\)且\(0!=1\)。我们可以发现,只到\(n=23\),才有一个组合数\(C(23,10)=1144066\)超过了一百万。那么,对于\(1\le n\le 100\)中有多少个\(C(n,r)\)大于一百万(可以重复计算)?

分析:我们在十五题中已经编写过计算组合数的函数,这里可以直接拿来用。当然,我们遍历一至一百,找到所有大于一百万的组合数,统计其个数即为题目所求,但还有一个效率更高的方法。我们知道对于特定的\(n\),\(C(n,r)\)先随着\(r\)的增加而增加,到达最大值后再随着\(r\)的增加而减少,且组合数具有对称性,即\(C(n,r)=C(n,n-r)\)。显然,如果\(C(n,r)\)大于一百万,那么从\(C(n,r)\)至\(C(n,n-r)\)中的所有数都会大于一百万,这样的数的个数\(k=(n-r)-r+1\),因此对于特定的\(n\),只要找到第一个大于一百万\(r\)的值,就不需要继续往后寻找,可以直接知道对于这个特定的\(n\),有多少个数会大于一百万。题目已经说明,在\(,n=23,r=10\)时会有第一个数大于一百万,则我们可以从23开始遍历,依次寻找每个\(n\)值下大于一百万的第一个\(r\)值,然后计算出在这个\(n\)下有多少数大于一百万,最后把所有的值加总,即为在\(1\le n\le100\)时组合数大于一百万的个数。代码如下:

# time cost = 997 µs ± 5.72 µs

from math import factorial as fac

def comb_num(n,k):
num = fac(n)/(fac(n-k)*fac(k))
return num def main():
count = 0
for n in range(23,101):
for r in range(1,n//2):
if comb_num(n,r) > 10**6:
count += (n - 2*r + 1)
break
return count

Project Euler 53: Combinatoric selections的更多相关文章

  1. (Problem 53)Combinatoric selections

    There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...

  2. Python练习题 049:Project Euler 022:姓名分值

    本题来自 Project Euler 第22题:https://projecteuler.net/problem=22 ''' Project Euler: Problem 22: Names sco ...

  3. Python练习题 039:Project Euler 011:网格中4个数字的最大乘积

    本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...

  4. [project euler] program 4

    上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...

  5. Python练习题 029:Project Euler 001:3和5的倍数

    开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...

  6. Project Euler 9

    题意:三个正整数a + b + c = 1000,a*a + b*b = c*c.求a*b*c. 解法:可以暴力枚举,但是也有数学方法. 首先,a,b,c中肯定有至少一个为偶数,否则和不可能为以上两个 ...

  7. Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.

    In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentago ...

  8. project euler 169

    project euler 169 题目链接:https://projecteuler.net/problem=169 参考题解:http://tieba.baidu.com/p/2738022069 ...

  9. 【Project Euler 8】Largest product in a series

    题目要求是: The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × ...

随机推荐

  1. Web Storage和cookie的区别——每日一题20190629

    Web Storage? 使用HTML5可以在本地存储用户的浏览数据. 使用的主要目的是为了克服Cookie带来的一些限制,当数据需要被严格控制在客户端上时,无需持续的将数据发回服务器 主要目标: 1 ...

  2. uniapp 与C# 加解密

    1 uni-app操作 (1) 打开HBuilderX的视图->显示终端 cd 切换到你项目的根目录 执行命令 npm install crypto-js 安装成功后你的项目根目录会生成node ...

  3. 使用malloc函数或new运算符为链表结点分配内存空间

    目录 使用malloc函数或new运算符为链表结点分配内存空间 使用malloc函数或new运算符为链表结点分配内存空间 当我们定义链表结点类型后,如何在每次需要使用新结点时临时分配相应大小的内存空间 ...

  4. 2.1实现简单基础的vector

    2.1实现简单基础的vector 1.设计API 我们参考下C++ <std> 库中的vector, vector中的api很多,所以我们把里面用的频率很高的函数实现; 1.1 new&a ...

  5. Python玩转人工智能最火框架 TensorFlow应用实践 ☝☝☝

    Python玩转人工智能最火框架 TensorFlow应用实践 (一个人学习或许会很枯燥,但是寻找更多志同道合的朋友一起,学习将会变得更加有意义✌✌) 全民人工智能时代,不甘心只做一个旁观者,那就现在 ...

  6. C#调用RabbitMQ实现消息队列

    前言 我在刚接触使用中间件的时候,发现,中间件的使用并不是最难的,反而是中间件的下载,安装,配置才是最难的. 所以,这篇文章我们从头开始学习RabbitMq,真正的从头开始. 关于消息队列 其实消息队 ...

  7. Python_函数传参

    关于函数中传递参数的相关知识 其中 万能参数 第一次听说 但感觉用处不大 后面用到再详细整理

  8. 小工具---将图片文件MultipartFile保存到指定目录

    import org.springframework.web.multipart.MultipartFile; import java.io.IOException; /** 保存图片 @author ...

  9. 使用 Helm Chart 部署及卸载 istio

    部署 istio 1.添加 istio 官方的 helm 仓库 helm repo add istio https://storage.googleapis.com/istio-release/rel ...

  10. Dispatcher与UI线程交互

    this.chart2.Dispatcher.BeginInvoke(new Action(() => { this.chart2.SetData("Series1", lx ...