噩梦场。

题目出奇的难,好像一群外国老哥看 A 看着看着就哭了……


A

找到 \(b\) 最低的 \(1\),这个 \(1\) 肯定要跟 A 中的一个 \(1\) 搭配,而且是能搭配的 \(1\) 中最低的。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=100010,mod=998244353;
#define MP make_pair
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
int x=0,f=0;char ch=getchar();
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int t,n,m;
char a[maxn],b[maxn];
int main(){
t=read();
while(t--){
scanf("%s",a+1);scanf("%s",b+1);
n=strlen(a+1);m=strlen(b+1);
int at,ans=0;
ROF(i,m,1) if(b[i]=='1'){at=n-(m-i);break;}
while(at>0 && a[at]=='0') at--,ans++;
printf("%d\n",ans);
}
}

B

大力枚举 \(i,j\)。对于每个 \(i,j\) 都 \(O(n)\) 算,每次就是问在相邻两个数之间最少加多少个数。特别注意相邻两个数相同的情况。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=2000200,mod=998244353;
#define MP make_pair
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
int x=0,f=0;char ch=getchar();
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int n,ok[10][10][111],okk[10][10][10];
char s[maxn];
int main(){
scanf("%s",s+1);
n=strlen(s+1);
MEM(ok,0x3f);MEM(okk,0x3f);
FOR(i,0,9) FOR(j,0,9){
ok[i][j][0]=0;
FOR(l,0,99){
ok[i][j][l+i]=min(ok[i][j][l+i],ok[i][j][l]+1);
ok[i][j][l+j]=min(ok[i][j][l+j],ok[i][j][l]+1);
}
FOR(k,1,110) okk[i][j][k%10]=min(okk[i][j][k%10],ok[i][j][k]);
if(!i || !j) okk[i][j][0]=1;
// FOR(k,0,9) printf("ok[%d][%d][%d]=%d\n",i,j,k,ok[i][j][k]);
}
FOR(i,0,9){
FOR(j,0,9){
int ans=0;
bool flag=true;
FOR(k,2,n){
int x=okk[i][j][(s[k]-s[k-1]+10)%10];
x=max(x-1,0);
if(x>=1e9){printf("-1 ");flag=false;break;}
ans+=x;
}
if(flag) printf("%d ",ans);
}
puts("");
}
}

C

毒瘤玩意……当然可能是我写复杂了。

上下和左右互不干扰,分开考虑。以上下为例。

把上看成 \(1\),下看成 \(-1\),那么竖直方向一共跨过了最大前缀和-最小前缀和单位。

不妨枚举在哪里插入字符,然后瞎合并一通。

需要很多东西,比如每个前缀的后缀和的后缀最大值。(smg……)

不保证代码能让大家都理解。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=200020,mod=998244353;
#define MP make_pair
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
int x=0,f=0;char ch=getchar();
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int t,n,n1,n2,pre1[maxn],suf1[maxn],pre2[maxn],suf2[maxn];
int mnpre1[maxn],mxpre1[maxn],mnpre2[maxn],mxpre2[maxn],mnsuf1[maxn],mxsuf1[maxn],mnsuf2[maxn],mxsuf2[maxn];
int s1[maxn],s2[maxn];
ll ans;
char s[maxn];
void calc(int n,int a[],int pre[],int suf[],int mnpre[],int mxpre[],int mnsuf[],int mxsuf[]){
FOR(i,1,n) pre[i]=pre[i-1]+a[i];
ROF(i,n,1) suf[i]=suf[i+1]+a[i];
FOR(i,1,n) mnpre[i]=a[i]+min(0,mnpre[i-1]),mxpre[i]=a[i]+max(0,mxpre[i-1]);
ROF(i,n,1) mnsuf[i]=min(mnsuf[i+1],suf[i]),mxsuf[i]=max(mxsuf[i+1],suf[i]);
// FOR(i,1,n) printf("pre[%d]=%d,suf[%d]=%d,mnpre[%d]=%d,mxpre[%d]=%d,mnsuf[%d]=%d,mxsuf[%d]=%d\n",i,pre[i],i,suf[i],i,mnpre[i],i,mxpre[i],i,mnsuf[i],i,mxsuf[i]);
}
int main(){
t=read();
while(t--){
scanf("%s",s+1);
n=strlen(s+1);
n1=n2=0;
FOR(i,1,n){
if(s[i]=='W') s1[++n1]=1;
else if(s[i]=='S') s1[++n1]=-1;
else if(s[i]=='A') s2[++n2]=1;
else s2[++n2]=-1;
}
calc(n1,s1,pre1,suf1,mnpre1,mxpre1,mnsuf1,mxsuf1);
calc(n2,s2,pre2,suf2,mnpre2,mxpre2,mnsuf2,mxsuf2);
ans=1ll*(mxsuf2[1]-mnsuf2[1]+1)*(mxsuf1[1]-mnsuf1[1]+1);
// cout<<ans<<endl;
FOR(i,0,n1) ans=min(ans,1ll*(mxsuf2[1]-mnsuf2[1]+1)*(
min(
max(mxsuf1[i+1],suf1[i+1]+1+max(mxpre1[i],0))-min(mnsuf1[i+1],suf1[i+1]+1+min(mnpre1[i],0)),
max(mxsuf1[i+1],suf1[i+1]-1+max(mxpre1[i],0))-min(mnsuf1[i+1],suf1[i+1]-1+min(mnpre1[i],0))
)+1));
// cout<<ans<<endl;
FOR(i,0,n2) ans=min(ans,1ll*(mxsuf1[1]-mnsuf1[1]+1)*(
min(
max(mxsuf2[i+1],suf2[i+1]+1+max(mxpre2[i],0))-min(mnsuf2[i+1],suf2[i+1]+1+min(mnpre2[i],0)),
max(mxsuf2[i+1],suf2[i+1]-1+max(mxpre2[i],0))-min(mnsuf2[i+1],suf2[i+1]-1+min(mnpre2[i],0))
)+1));
cout<<ans<<endl;
FOR(i,0,n+1) pre1[i]=suf1[i]=pre2[i]=suf2[i]=mxpre1[i]=mnpre1[i]=mxsuf1[i]=mnsuf1[i]=mxpre2[i]=mnpre2[i]=mxsuf2[i]=mnsuf2[i]=0;
}
}

D

考虑只有一个 \(7\) 能不能做。\(7\) 明显在最右边。对于每个 \(1\),求出它右边有 \(x_i\) 个 \(3\),答案就是 \(\sum\frac{x_i(x_i-1)}{2}\)。

然后每次选一个尽可能大的 \(x_i\),不停构造,由于 \(x_i\) 肯定不超过 \(50000\),而且无论 \(n\) 多小都可以在后面加 \(2\) 个 \(3\) 使得 \(n\) 减少 \(1\),所以这组解一定存在且合法。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=100010,mod=998244353;
#define MP make_pair
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
int x=0,f=0;char ch=getchar();
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int t,n,a[maxn],k;
int main(){
t=read();
while(t--){
n=read();k=0;MEM(a,0);
while(n){
a[++k]=sqrt(2*n);
while(a[k]*(a[k]-1)<=2*n) a[k]++;
while(a[k]*(a[k]-1)>2*n) a[k]--;
n-=a[k]*(a[k]-1)/2;
}
FOR(i,1,k){
printf("1");
FOR(j,1,a[i]-a[i+1]) printf("3");
}
printf("7\n");
}
}

E

最小清新的一道题。

考虑求出 \(a[i]\) 表示在 \(t\) 中能以 \(i\) 结尾匹配的串的个数,\(b[i]\) 表示在 \(t\) 中能以 \(i\) 开头匹配的串的个数。答案是 \(\sum a[i]b[i+1]\)。

这两个东西都可以通过 AC 自动机简单求。大概就是维护 fail 链上末尾节点的个数之类的。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=200020,mod=998244353;
#define MP make_pair
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
int x=0,f=0;char ch=getchar();
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
struct ACAM{
int cnt,ch[maxn][26],fail[maxn],q[maxn],sum[maxn],h,r,val[maxn];
void insert(char *s,int l){
int now=0;
FOR(i,1,l){
int p=s[i]-'a';
if(!ch[now][p]) ch[now][p]=++cnt;
now=ch[now][p];
}
sum[now]++;
}
void build(){
h=1;r=0;
FOR(i,0,25) if(ch[0][i]) q[++r]=ch[0][i];
while(h<=r){
int u=q[h++];
FOR(i,0,25) if(ch[u][i]){
fail[ch[u][i]]=ch[fail[u]][i];
sum[ch[u][i]]+=sum[fail[ch[u][i]]];
q[++r]=ch[u][i];
}
else ch[u][i]=ch[fail[u]][i];
}
}
void run(char *s,int l){
int now=0;
FOR(i,1,l){
int p=s[i]-'a';
now=ch[now][p];
val[i]=sum[now];
}
}
}AC[2];
int n,l;
ll ans;
char t[maxn],s[maxn];
int main(){
scanf("%s",t+1);l=strlen(t+1);
n=read();
FOR(i,1,n){
scanf("%s",s+1);
int len=strlen(s+1);
AC[0].insert(s,len);
for(int j=1,k=len;j<k;j++,k--) swap(s[j],s[k]);
AC[1].insert(s,len);
}
AC[0].build();AC[1].build();
AC[0].run(t,l);
for(int i=1,j=l;i<j;i++,j--) swap(t[i],t[j]);
AC[1].run(t,l);
FOR(i,1,l) ans+=1ll*AC[0].val[i]*AC[1].val[l-i];
// FOR(i,1,l) printf("val1[%d]=%d,val2[%d]=%d\n",i,AC[0].val[i],i,AC[1].val[l-i+1]);
cout<<ans<<endl;
}

Educational Codeforces Round 70 题解的更多相关文章

  1. Educational Codeforces Round 70 (Rated for Div. 2) 题解

    比赛链接:https://codeforc.es/contest/1202 A. You Are Given Two Binary Strings... 题意:给出两个二进制数\(f(x)\)和\(f ...

  2. Educational Codeforces Round 19 题解【ABCDE】

    A. k-Factorization 题意:给你一个n,问你这个数能否分割成k个大于1的数的乘积. 题解:因为n的取值范围很小,所以感觉dfs应该不会有很多种可能-- #include<bits ...

  3. Educational Codeforces Round 55 题解

    题解 CF1082A [Vasya and Book] 史上最难A题,没有之一 从题意可以看出,翻到目标页只有三种办法 先从\(x\)到\(1\),再从\(1\)到\(y\) 先从\(x\)到\(n\ ...

  4. Codeforces Educational Codeforces Round 54 题解

    题目链接:https://codeforc.es/contest/1076 A. Minimizing the String 题意:给出一个字符串,最多删掉一个字母,输出操作后字典序最小的字符串. 题 ...

  5. Codeforces Educational Codeforces Round 57 题解

    传送门 Div 2的比赛,前四题还有那么多人过,应该是SB题,就不讲了. 这场比赛一堆计数题,很舒服.(虽然我没打) E. The Top Scorer 其实这题也不难,不知道为什么这么少人过. 考虑 ...

  6. Educational Codeforces Round 57题解

    A.Find Divisible 沙比题 显然l和2*l可以直接满足条件. 代码 #include<iostream> #include<cctype> #include< ...

  7. Educational Codeforces Round 24 题解

    A: 考你会不会除法 //By SiriusRen #include <bits/stdc++.h> using namespace std; #define int long long ...

  8. Educational Codeforces Round 70 (Rated for Div. 2)

    这次真的好难...... 我这个绿名蒟蒻真的要崩溃了555... 我第二题就不会写...... 暴力搜索MLE得飞起. 好像用到最短路?然而我并没有学过,看来这个知识点又要学. 后面的题目赛中都没看, ...

  9. Educational Codeforces Round 70

    目录 Contest Info Solutions A. You Are Given Two Binary Strings... B. You Are Given a Decimal String.. ...

随机推荐

  1. 集成Azure DevOps Server(TFS) 与微软Teams

    1.概述 Microsoft Teams是Office 365中团队协作的中心.将团队的所有聊天.会议.文件和应用程序放在一个位置.软件开发团队可以在一个专门的协作中心中即时访问他们所需的所有内容,T ...

  2. TensofFlow函数: tf.image.crop_and_resize

    tf.image.crop_and_resize( image, boxes, box_ind, crop_size, method='bilinear', extrapolation_value=0 ...

  3. VS 中批量格式化、删除未使用的 using 语句代码的插件

    插件名称:Format All Files 插件地址:https://marketplace.visualstudio.com/items?itemName=munyabe.FormatAllFile ...

  4. 云原生生态周报 Vol. 13 | Forrester 发布企业级容器平台报告

    业界要闻 近日,全球知名市场调研机构 Forrester 发布首个企业级公共云容器平台报告.其中,阿里云容器服务的市场表现全球前三.中国第一,同时创造中国企业最好成绩,进入强劲表现者象限.报告显示,阿 ...

  5. Neo4j 第十一篇:Cypher函数

    Cypher函数是对图进行查询和操作的重要工具. 一,谓词函数 谓词函数返回true或者false,主要用于检查是否存在或满足特定的条件. 1,Exists 如果指定的模式存在于图中,或者特定的属性存 ...

  6. MySQL for OPS 05:日志管理

    写在前面的话 日志是作为用户排查服务问题的重要依据,在 MySQL 中日志可以分为几类,各自产生着不同的作用.如 error log / bin log / slow log 等.很多时候优化数据库的 ...

  7. VS Code 自动修改和保存 代码风格 == eslint+prettier

    最近因为用到VS Code,需要统一所有人的代码风格(前端语言js/html/css等,或者后端语言 go/python等也可以这么用). 所以参考了一些网络资料,记录下设置步骤,以便后续查阅. St ...

  8. Kibana插件开发

    当前开发环境 Kibana版本:7.2 elasticsearch版本:7.2 开发环境安装可参考:https://github.com/elastic/kibana/blob/master/CONT ...

  9. SolidWorks 2020新增功能之性能提升

    SolidWorks解决方案组合的新功能和增强功能将帮助您最大程度地提高设计和制造资源的生产率,同时使您能够更快地交付创新产品.现在我们很激动地告诉你,三维设计SolidWorks  3D CAD 2 ...

  10. Android Studio 3.5+ 使用androidx的recyclerView

    一 File->project structure->Dependencies: 点击All Dependencies处的加号,选择Library Dependency: 在step1处输 ...