Deepo
Deepo is a series of Docker images that
- allows you to quickly set up your deep learning research environment
- supports almost all commonly used deep learning frameworks
- supports GPU acceleration (CUDA and cuDNN included), also works in CPU-only mode
- works on Linux (CPU version/GPU version), Windows (CPU version) and OS X (CPU version)
and their Dockerfile generator that
- allows you to customize your own environment with Lego-like modules
- automatically resolves the dependencies for you
GPU Version
Installation
Step 1. Install Docker and nvidia-docker.
Step 2. Obtain the all-in-one image from Docker Hub
docker pull ufoym/deepo
For users in China who may suffer from slow speeds when pulling the image from the public Docker registry, you can pull deepo images from the China registry mirror by specifying the full path, including the registry, in your docker pull command, for example:
docker pull registry.docker-cn.com/ufoym/deepo
or
docker pull hub-mirror.c.163.com/ufoym/deepo
or
docker pull docker.mirrors.ustc.edu.cn/ufoym/deepo
Usage
Now you can try this command:
docker run --runtime=nvidia --rm ufoym/deepo nvidia-smi
This should work and enables Deepo to use the GPU from inside a docker container. If this does not work, search the issues section on the nvidia-docker GitHub – many solutions are already documented. To get an interactive shell to a container that will not be automatically deleted after you exit do
docker run --runtime=nvidia -it ufoym/deepo bash
If you want to share your data and configurations between the host (your machine or VM) and the container in which you are using Deepo, use the -v option, e.g.
docker run --runtime=nvidia -it -v /host/data:/data -v /host/config:/config ufoym/deepo bash
This will make /host/data from the host visible as /data in the container, and /host/config as /config. Such isolation reduces the chances of your containerized experiments overwriting or using wrong data.
Please note that some frameworks (e.g. PyTorch) use shared memory to share data between processes, so if multiprocessing is used the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host or --shm-size command line options to docker run.
docker run --runtime=nvidia -it --ipc=host ufoym/deepo bash
CPU Version
Installation
Step 1. Install Docker.
Step 2. Obtain the all-in-one image from Docker Hub
docker pull ufoym/deepo:cpu
Usage
Now you can try this command:
docker run -it ufoym/deepo:cpu bash
If you want to share your data and configurations between the host (your machine or VM) and the container in which you are using Deepo, use the -v option, e.g.
docker run -it -v /host/data:/data -v /host/config:/config ufoym/deepo:cpu bash
This will make /host/data from the host visible as /data in the container, and /host/config as /config. Such isolation reduces the chances of your containerized experiments overwriting or using wrong data.
Please note that some frameworks (e.g. PyTorch) use shared memory to share data between processes, so if multiprocessing is used the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host or --shm-size command line options to docker run.
docker run -it --ipc=host ufoym/deepo:cpu bash
You are now ready to begin your journey.
$ python
>>> import tensorflow
>>> import sonnet
>>> import torch
>>> import keras
>>> import mxnet
>>> import cntk
>>> import chainer
>>> import theano
>>> import lasagne
>>> import caffe
>>> import caffe2
$ caffe --version
caffe version 1.0.0
$ darknet
usage: darknet <function>
$ th
│ ______ __ | Torch7
│ /_ __/__ ________/ / | Scientific computing for Lua.
│ / / / _ \/ __/ __/ _ \ | Type ? for help
│ /_/ \___/_/ \__/_//_/ | https://github.com/torch
│ | http://torch.ch
│
│th>
Customization
Note that docker pull ufoym/deepo mentioned in Quick Start will give you a standard image containing all available deep learning frameworks. You can customize your own environment as well.
Unhappy with all-in-one solution?
If you prefer a specific framework rather than an all-in-one image, just append a tag with the name of the framework. Take tensorflow for example:
docker pull ufoym/deepo:tensorflow
Jupyter support
Step 1. pull the image with jupyter support
docker pull ufoym/deepo:all-jupyter
Step 2. run the image
docker run --runtime=nvidia -it -p 8888:8888 --ipc=host ufoym/deepo:all-jupyter jupyter notebook --no-browser --ip=0.0.0.0 --allow-root --NotebookApp.token= --notebook-dir='/root'
Build your own customized image with Lego-like modules
Step 1. prepare generator
git clone https://github.com/ufoym/deepo.git
cd deepo/generator
Step 2. generate your customized Dockerfile
For example, if you like pytorch and lasagne, then
python generate.py Dockerfile pytorch lasagne
This should generate a Dockerfile that contains everything for building pytorch and lasagne. Note that the generator can handle automatic dependency processing and topologically sort the lists. So you don’t need to worry about missing dependencies and the list order.
You can also specify the version of Python:
python generate.py Dockerfile pytorch lasagne python==3.6
Step 3. build your Dockerfile
docker build -t my/deepo .
This may take several minutes as it compiles a few libraries from scratch.
Comparison to alternatives
| . | modern-deep-learning | dl-docker | jupyter-deeplearning | Deepo |
|---|---|---|---|---|
| ubuntu | 16.04 | 14.04 | 14.04 | 18.04 |
| cuda | X | 8.0 | 6.5-8.0 | 8.0-10.0/None |
| cudnn | X | v5 | v2-5 | v7 |
| onnx | X | X | X | O |
| theano | X | O | O | O |
| tensorflow | O | O | O | O |
| sonnet | X | X | X | O |
| pytorch | X | X | X | O |
| keras | O | O | O | O |
| lasagne | X | O | O | O |
| mxnet | X | X | X | O |
| cntk | X | X | X | O |
| chainer | X | X | X | O |
| caffe | O | O | O | O |
| caffe2 | X | X | X | O |
| torch | X | O | O | O |
| darknet | X | X | X | O |
Tags
Available Tags
| . | CUDA 10.0 / Python 3.6 | CPU-only / Python 3.6 |
|---|---|---|
| all-in-one | latest all all-py36 py36-cu100 all-py36-cu100 |
all-py36-cpu all-cpu py36-cpu cpu |
| all-in-one with jupyter | all-jupyter-py36-cu100 all-jupyter-py36 all-jupyter |
all-py36-jupyter-cpu py36-jupyter-cpu |
| Theano | theano-py36-cu100 theano-py36 theano |
theano-py36-cpu theano-cpu |
| TensorFlow | tensorflow-py36-cu100 tensorflow-py36 tensorflow |
tensorflow-py36-cputensorflow-cpu |
| Sonnet | sonnet-py36-cu100 sonnet-py36 sonnet |
sonnet-py36-cpu sonnet-cpu |
| PyTorch / Caffe2 | pytorch-py36-cu100 pytorch-py36pytorch |
pytorch-py36-cpu pytorch-cpu |
| Keras | keras-py36-cu100 keras-py36 keras |
keras-py36-cpu keras-cpu |
| Lasagne | lasagne-py36-cu100 lasagne-py36lasagne |
lasagne-py36-cpu lasagne-cpu |
| MXNet | mxnet-py36-cu100 mxnet-py36 mxnet |
mxnet-py36-cpu mxnet-cpu |
| CNTK | cntk-py36-cu100 cntk-py36 cntk |
cntk-py36-cpu cntk-cpu |
| Chainer | chainer-py36-cu100 chainer-py36chainer |
chainer-py36-cpu chainer-cpu |
| Caffe | caffe-py36-cu100 caffe-py36 caffe |
caffe-py36-cpu caffe-cpu |
| Torch | torch-cu100 torch |
torch-cpu |
| Darknet | darknet-cu100 darknet |
darknet-cpu |
Deprecated Tags
| . | CUDA 9.0 / Python 3.6 | CUDA 9.0 / Python 2.7 | CPU-only / Python 3.6 | CPU-only / Python 2.7 |
|---|---|---|---|---|
| all-in-one | py36-cu90 all-py36-cu90 |
all-py27-cu90all-py27 py27-cu90 |
all-py27-cpupy27-cpu |
|
| all-in-one with jupyter | all-jupyter-py36-cu90 |
all-py27-jupyter py27-jupyter |
all-py27-jupyter-cpu py27-jupyter-cpu |
|
| Theano | theano-py36-cu90 |
theano-py27-cu90 theano-py27 |
theano-py27-cpu |
|
| TensorFlow | tensorflow-py36-cu90 |
tensorflow-py27-cu90tensorflow-py27 |
tensorflow-py27-cpu |
|
| Sonnet | sonnet-py36-cu90 |
sonnet-py27-cu90 sonnet-py27 |
sonnet-py27-cpu |
|
| PyTorch | pytorch-py36-cu90 |
pytorch-py27-cu90 pytorch-py27 |
pytorch-py27-cpu |
|
| Keras | keras-py36-cu90 |
keras-py27-cu90keras-py27 |
keras-py27-cpu |
|
| Lasagne | lasagne-py36-cu90 |
lasagne-py27-cu90 lasagne-py27 |
lasagne-py27-cpu |
|
| MXNet | mxnet-py36-cu90 |
mxnet-py27-cu90mxnet-py27 |
mxnet-py27-cpu |
|
| CNTK | cntk-py36-cu90 |
cntk-py27-cu90cntk-py27 |
cntk-py27-cpu |
|
| Chainer | chainer-py36-cu90 |
chainer-py27-cu90 chainer-py27 |
chainer-py27-cpu |
|
| Caffe | caffe-py36-cu90 |
caffe-py27-cu90caffe-py27 |
caffe-py27-cpu |
|
| Caffe2 | caffe2-py36-cu90 caffe2-py36 caffe2 |
caffe2-py27-cu90 caffe2-py27 |
caffe2-py36-cpucaffe2-cpu |
caffe2-py27-cpu |
| Torch | torch-cu90 |
torch-cu90 torch |
torch-cpu |
|
| Darknet | darknet-cu90 |
darknet-cu90darknet |
darknet-cpu |
Citation
@misc{ming2017deepo,
author = {Ming Yang},
title = {Deepo: set up deep learning environment in a single command line.},
year = {2017},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/ufoym/deepo}}
}
Contributing
We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us.
Licensing
Deepo is MIT licensed.
Deepo的更多相关文章
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (一)ubuntu18.04配置n ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (三)配置远程桌面连接访问dock ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (二)nvidia docker配 ...
- Vmvare + Ubuntu 16.04环境搭建 + 相关软件安装配置笔记【深度学习】
前言 由于学习与工作的需要,加上之前配置好的vmmachines都损坏了,我就重新弄一个ubuntu虚拟机,配置一下环境,给自己留个记录 1.文件 2.配置过程 1.在Vmware中新建虚拟机,自定义 ...
- 教你如何用Docker快速搭建深度学习环境
本教程搭建集 Tensorflow.Keras.Coffe.PyTorch 等深度学习框架于一身的环境,及jupyter. 本教程使用nvidia-docker启动实例,通过本教程可以从一个全新的Ub ...
- [AI] 切换cuda版本的万金油
1. 环境 ubuntu16.04 GTX1080Ti x 4 nvidia-418 cuda-10.1 pytorch1.0.0 目标:在最新的显卡驱动下,使用不同版本的cuda和深度学习框架来执行 ...
- docker出现如下错误:Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running?
在docker中配置deepo时出现了错误: 在出现这个错误之前,我是先用如下命令查看NVIDIA-docker是否安装成功. docker run --runtime=nvidia --rm nvi ...
- 服务器搭建远程docker深度学习环境
服务器搭建远程docker深度学习环境 本文大部分内容参考知乎文章 Docker+PyCharm快速搭建机器学习开发环境 搭建过程中出现ssh连接问题可以查看最后的注意事项 Docker Docker ...
随机推荐
- nginx.conf 下日志host.access.log 说明
位置usr/local/nginx/conf/nginx.conf $server_port 请求端口 $remote_addr 局域网代理IP:如果没同意任何代理的话$remote_addr 就是真 ...
- 腾讯面试Android高级岗,居然被一个多线程基础面倒了?
前言 一个在深圳从事开发五年的老友一个月前从原公司辞职后,昨天去腾讯总部面试Android高级岗,一面的时候,自我介绍后,陆陆续续问了很多问题,有着五年的从业经验很多项目开发的技术问题都回答的很通顺, ...
- JavaScript三种方法获取地址栏参数的方法
今天碰到要在一个页面获取另外一个页面url传过来的参数,一开始很本能的想到了用 split(“?”)这样一步步的分解出需要的参数. 后来想了一下,肯定会有更加简单的方法的!所以在网上找到了两个很又简单 ...
- Codeforces Round #609 (Div. 2) A到C题
签到,乘以两个相邻的合数 #include<bits/stdc++.h> using namespace std; int main(int argc, char const *argv[ ...
- 微信小程序自动化jest模拟场景/切出/切入
await miniProgram.evaluate(() => getApp().clickBanner({ path: "pages/game/home/home", q ...
- jdk,jre,jvm,openJdk
1,jdk install: java_home: point to the installation directory of JDK, which is used by some java dev ...
- Layui 隐藏左侧菜单
简单实现 //隐藏菜单 var bl = $("#LAY_app_flexible").hasClass("layui-icon-shrink-right"); ...
- 深入js系列-类型(隐式强制转换)
隐式强制转换 在其可控的情况下,减少冗余,让代码更简洁,很多地方都进行了隐式转换,比如常见的三目表达式.if().for().while.逻辑运算符 || &&,适当通过语言机制,抽象 ...
- tensorflow学习笔记(三):实现自编码器
黄文坚的tensorflow实战一书中的第四章,讲述了tensorflow实现多层感知机.Hiton早年提出过自编码器的非监督学习算法,书中的代码给出了一个隐藏层的神经网络,本人扩展到了多层,改进了代 ...
- React_01_ECMAScript6
ECMAScript6 1.ES6简介 1.1.什么是ES6 ECMAScript 6.0(以下简称 ES6)是 JavaScript 语言的下一代标准,已经在 2015 年 6 月正式发布了.它的目 ...