Deepo is a series of Docker images that

and their Dockerfile generator that


GPU Version

Installation

Step 1. Install Docker and nvidia-docker.

Step 2. Obtain the all-in-one image from Docker Hub

docker pull ufoym/deepo

For users in China who may suffer from slow speeds when pulling the image from the public Docker registry, you can pull deepo images from the China registry mirror by specifying the full path, including the registry, in your docker pull command, for example:

docker pull registry.docker-cn.com/ufoym/deepo

or

docker pull hub-mirror.c.163.com/ufoym/deepo

or

docker pull docker.mirrors.ustc.edu.cn/ufoym/deepo

Usage

Now you can try this command:

docker run --runtime=nvidia --rm ufoym/deepo nvidia-smi

This should work and enables Deepo to use the GPU from inside a docker container. If this does not work, search the issues section on the nvidia-docker GitHub – many solutions are already documented. To get an interactive shell to a container that will not be automatically deleted after you exit do

docker run --runtime=nvidia -it ufoym/deepo bash

If you want to share your data and configurations between the host (your machine or VM) and the container in which you are using Deepo, use the -v option, e.g.

docker run --runtime=nvidia -it -v /host/data:/data -v /host/config:/config ufoym/deepo bash

This will make /host/data from the host visible as /data in the container, and /host/config as /config. Such isolation reduces the chances of your containerized experiments overwriting or using wrong data.

Please note that some frameworks (e.g. PyTorch) use shared memory to share data between processes, so if multiprocessing is used the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host or --shm-size command line options to docker run.

docker run --runtime=nvidia -it --ipc=host ufoym/deepo bash

CPU Version

Installation

Step 1. Install Docker.

Step 2. Obtain the all-in-one image from Docker Hub

docker pull ufoym/deepo:cpu

Usage

Now you can try this command:

docker run -it ufoym/deepo:cpu bash

If you want to share your data and configurations between the host (your machine or VM) and the container in which you are using Deepo, use the -v option, e.g.

docker run -it -v /host/data:/data -v /host/config:/config ufoym/deepo:cpu bash

This will make /host/data from the host visible as /data in the container, and /host/config as /config. Such isolation reduces the chances of your containerized experiments overwriting or using wrong data.

Please note that some frameworks (e.g. PyTorch) use shared memory to share data between processes, so if multiprocessing is used the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host or --shm-size command line options to docker run.

docker run -it --ipc=host ufoym/deepo:cpu bash

You are now ready to begin your journey.

$ python

>>> import tensorflow
>>> import sonnet
>>> import torch
>>> import keras
>>> import mxnet
>>> import cntk
>>> import chainer
>>> import theano
>>> import lasagne
>>> import caffe
>>> import caffe2

$ caffe --version

caffe version 1.0.0

$ darknet

usage: darknet <function>

$ th

 │  ______             __   |  Torch7
│ /_ __/__ ________/ / | Scientific computing for Lua.
│ / / / _ \/ __/ __/ _ \ | Type ? for help
│ /_/ \___/_/ \__/_//_/ | https://github.com/torch
│ | http://torch.ch

│th>

Customization

Note that docker pull ufoym/deepo mentioned in Quick Start will give you a standard image containing all available deep learning frameworks. You can customize your own environment as well.

Unhappy with all-in-one solution?

If you prefer a specific framework rather than an all-in-one image, just append a tag with the name of the framework. Take tensorflow for example:

docker pull ufoym/deepo:tensorflow

Jupyter support

Step 1. pull the image with jupyter support

docker pull ufoym/deepo:all-jupyter

Step 2. run the image

docker run --runtime=nvidia -it -p 8888:8888 --ipc=host ufoym/deepo:all-jupyter jupyter notebook --no-browser --ip=0.0.0.0 --allow-root --NotebookApp.token= --notebook-dir='/root'

Build your own customized image with Lego-like modules

Step 1. prepare generator

git clone https://github.com/ufoym/deepo.git
cd deepo/generator

Step 2. generate your customized Dockerfile

For example, if you like pytorch and lasagne, then

python generate.py Dockerfile pytorch lasagne

This should generate a Dockerfile that contains everything for building pytorch and lasagne. Note that the generator can handle automatic dependency processing and topologically sort the lists. So you don’t need to worry about missing dependencies and the list order.

You can also specify the version of Python:

python generate.py Dockerfile pytorch lasagne python==3.6

Step 3. build your Dockerfile

docker build -t my/deepo .

This may take several minutes as it compiles a few libraries from scratch.

Comparison to alternatives

. modern-deep-learning dl-docker jupyter-deeplearning Deepo
ubuntu 16.04 14.04 14.04 18.04
cuda X 8.0 6.5-8.0 8.0-10.0/None
cudnn X v5 v2-5 v7
onnx X X X O
theano X O O O
tensorflow O O O O
sonnet X X X O
pytorch X X X O
keras O O O O
lasagne X O O O
mxnet X X X O
cntk X X X O
chainer X X X O
caffe O O O O
caffe2 X X X O
torch X O O O
darknet X X X O

Tags

Available Tags

. CUDA 10.0 / Python 3.6 CPU-only / Python 3.6
all-in-one latest all all-py36 py36-cu100 all-py36-cu100 all-py36-cpu all-cpu py36-cpu cpu
all-in-one with jupyter all-jupyter-py36-cu100 all-jupyter-py36 all-jupyter all-py36-jupyter-cpu py36-jupyter-cpu
Theano theano-py36-cu100 theano-py36 theano theano-py36-cpu theano-cpu
TensorFlow tensorflow-py36-cu100 tensorflow-py36 tensorflow tensorflow-py36-cputensorflow-cpu
Sonnet sonnet-py36-cu100 sonnet-py36 sonnet sonnet-py36-cpu sonnet-cpu
PyTorch / Caffe2 pytorch-py36-cu100 pytorch-py36pytorch pytorch-py36-cpu pytorch-cpu
Keras keras-py36-cu100 keras-py36 keras keras-py36-cpu keras-cpu
Lasagne lasagne-py36-cu100 lasagne-py36lasagne lasagne-py36-cpu lasagne-cpu
MXNet mxnet-py36-cu100 mxnet-py36 mxnet mxnet-py36-cpu mxnet-cpu
CNTK cntk-py36-cu100 cntk-py36 cntk cntk-py36-cpu cntk-cpu
Chainer chainer-py36-cu100 chainer-py36chainer chainer-py36-cpu chainer-cpu
Caffe caffe-py36-cu100 caffe-py36 caffe caffe-py36-cpu caffe-cpu
Torch torch-cu100 torch torch-cpu
Darknet darknet-cu100 darknet darknet-cpu

Deprecated Tags

. CUDA 9.0 / Python 3.6 CUDA 9.0 / Python 2.7 CPU-only / Python 3.6 CPU-only / Python 2.7
all-in-one py36-cu90 all-py36-cu90 all-py27-cu90all-py27 py27-cu90   all-py27-cpupy27-cpu
all-in-one with jupyter all-jupyter-py36-cu90 all-py27-jupyter py27-jupyter   all-py27-jupyter-cpu py27-jupyter-cpu
Theano theano-py36-cu90 theano-py27-cu90 theano-py27   theano-py27-cpu
TensorFlow tensorflow-py36-cu90 tensorflow-py27-cu90tensorflow-py27   tensorflow-py27-cpu
Sonnet sonnet-py36-cu90 sonnet-py27-cu90 sonnet-py27   sonnet-py27-cpu
PyTorch pytorch-py36-cu90 pytorch-py27-cu90 pytorch-py27   pytorch-py27-cpu
Keras keras-py36-cu90 keras-py27-cu90keras-py27   keras-py27-cpu
Lasagne lasagne-py36-cu90 lasagne-py27-cu90 lasagne-py27   lasagne-py27-cpu
MXNet mxnet-py36-cu90 mxnet-py27-cu90mxnet-py27   mxnet-py27-cpu
CNTK cntk-py36-cu90 cntk-py27-cu90cntk-py27   cntk-py27-cpu
Chainer chainer-py36-cu90 chainer-py27-cu90 chainer-py27   chainer-py27-cpu
Caffe caffe-py36-cu90 caffe-py27-cu90caffe-py27   caffe-py27-cpu
Caffe2 caffe2-py36-cu90 caffe2-py36 caffe2 caffe2-py27-cu90 caffe2-py27 caffe2-py36-cpucaffe2-cpu caffe2-py27-cpu
Torch torch-cu90 torch-cu90 torch   torch-cpu
Darknet darknet-cu90 darknet-cu90darknet   darknet-cpu

Citation

@misc{ming2017deepo,
author = {Ming Yang},
title = {Deepo: set up deep learning environment in a single command line.},
year = {2017},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/ufoym/deepo}}
}

Contributing

We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us.

Licensing

Deepo is MIT licensed.

Deepo的更多相关文章

  1. ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一)

    ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (一)ubuntu18.04配置n ...

  2. ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三)

    ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (三)配置远程桌面连接访问dock ...

  3. ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二)

    ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (二)nvidia docker配 ...

  4. Vmvare + Ubuntu 16.04环境搭建 + 相关软件安装配置笔记【深度学习】

    前言 由于学习与工作的需要,加上之前配置好的vmmachines都损坏了,我就重新弄一个ubuntu虚拟机,配置一下环境,给自己留个记录 1.文件 2.配置过程 1.在Vmware中新建虚拟机,自定义 ...

  5. 教你如何用Docker快速搭建深度学习环境

    本教程搭建集 Tensorflow.Keras.Coffe.PyTorch 等深度学习框架于一身的环境,及jupyter. 本教程使用nvidia-docker启动实例,通过本教程可以从一个全新的Ub ...

  6. [AI] 切换cuda版本的万金油

    1. 环境 ubuntu16.04 GTX1080Ti x 4 nvidia-418 cuda-10.1 pytorch1.0.0 目标:在最新的显卡驱动下,使用不同版本的cuda和深度学习框架来执行 ...

  7. docker出现如下错误:Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running?

    在docker中配置deepo时出现了错误: 在出现这个错误之前,我是先用如下命令查看NVIDIA-docker是否安装成功. docker run --runtime=nvidia --rm nvi ...

  8. 服务器搭建远程docker深度学习环境

    服务器搭建远程docker深度学习环境 本文大部分内容参考知乎文章 Docker+PyCharm快速搭建机器学习开发环境 搭建过程中出现ssh连接问题可以查看最后的注意事项 Docker Docker ...

随机推荐

  1. 二十、Python与Mysql交互

    先安装一个python与MySQL交互的包:MySQL-python $ gunzip MySQL-python-1.2.2.tar.gz $ tar -xvf MySQL-python-1.2.2. ...

  2. MySQL索引(九)

    一.索引介绍 1.1 什么是索引 索引就好比一本书的目录,它会让你更快的找到内容. 让获取的数据更有目的性,从而提高数据库检索数据的性能. 分为以下四种: BTREE:B+树索引(基本上都是使用此索引 ...

  3. LCD编程_LCD控制器

    CLKVAL : VCLK = HCLK / [(CLKVAL+1) x 2]--------> CLKVAL = HCLK/VCLK/2-1 在这个地方HCLK=100M,那么VLCK等于多少 ...

  4. 十大排序算法总结(Python3实现)

    十大排序算法总结(Python3实现) 本文链接:https://blog.csdn.net/aiya_aiya_/article/details/79846380 目录 一.概述 二.算法简介及代码 ...

  5. Cannot execute statement: impossible to write to binary log since BINLOG_FORMAT = STATEMENT and at least one table uses a storage engine limited to row-based logging. InnoDB is limited to row-logging

    1665 - Cannot execute statement: impossible to write to binary log since BINLOG_FORMAT = STATEMENT a ...

  6. three.js 基础使用1

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  7. 微信小程序 scroll-view 横向滚动条 隐藏无效

    看了许多网上教程说是添加如下样式可以解决,我加入到组件wxss中无效,加入全局wxss生效. 添加css代码如下: ::-webkit-scrollbar { ; ; color: transpare ...

  8. nginx 配置状态监控

    Nginx有内置一个状态页,需要在编译的时候指定参数--with-http_stub_status_module参数方可打开.也就是说,该功能是由http_stub_status_module模块提供 ...

  9. js 测试题

    //身份证号码为15位或者18位,15位时全为数字,18位前17位为数字,最后一位是校验位,可能为数字或字母x function isCardNo(card) { }$)|(^\d{}(\d|X|x) ...

  10. ECMAScript6-1

    1.let与const ES205(ES6)新增两个重要的JavaScript关键字:let和const let声明的变量只在let命令所在的代码块内有效,const声明一个只读的常量,一旦声明,其值 ...