Deepo
Deepo is a series of Docker images that
- allows you to quickly set up your deep learning research environment
- supports almost all commonly used deep learning frameworks
- supports GPU acceleration (CUDA and cuDNN included), also works in CPU-only mode
- works on Linux (CPU version/GPU version), Windows (CPU version) and OS X (CPU version)
and their Dockerfile generator that
- allows you to customize your own environment with Lego-like modules
- automatically resolves the dependencies for you
GPU Version
Installation
Step 1. Install Docker and nvidia-docker.
Step 2. Obtain the all-in-one image from Docker Hub
docker pull ufoym/deepo
For users in China who may suffer from slow speeds when pulling the image from the public Docker registry, you can pull deepo images from the China registry mirror by specifying the full path, including the registry, in your docker pull command, for example:
docker pull registry.docker-cn.com/ufoym/deepo
or
docker pull hub-mirror.c.163.com/ufoym/deepo
or
docker pull docker.mirrors.ustc.edu.cn/ufoym/deepo
Usage
Now you can try this command:
docker run --runtime=nvidia --rm ufoym/deepo nvidia-smi
This should work and enables Deepo to use the GPU from inside a docker container. If this does not work, search the issues section on the nvidia-docker GitHub – many solutions are already documented. To get an interactive shell to a container that will not be automatically deleted after you exit do
docker run --runtime=nvidia -it ufoym/deepo bash
If you want to share your data and configurations between the host (your machine or VM) and the container in which you are using Deepo, use the -v option, e.g.
docker run --runtime=nvidia -it -v /host/data:/data -v /host/config:/config ufoym/deepo bash
This will make /host/data from the host visible as /data in the container, and /host/config as /config. Such isolation reduces the chances of your containerized experiments overwriting or using wrong data.
Please note that some frameworks (e.g. PyTorch) use shared memory to share data between processes, so if multiprocessing is used the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host or --shm-size command line options to docker run.
docker run --runtime=nvidia -it --ipc=host ufoym/deepo bash
CPU Version
Installation
Step 1. Install Docker.
Step 2. Obtain the all-in-one image from Docker Hub
docker pull ufoym/deepo:cpu
Usage
Now you can try this command:
docker run -it ufoym/deepo:cpu bash
If you want to share your data and configurations between the host (your machine or VM) and the container in which you are using Deepo, use the -v option, e.g.
docker run -it -v /host/data:/data -v /host/config:/config ufoym/deepo:cpu bash
This will make /host/data from the host visible as /data in the container, and /host/config as /config. Such isolation reduces the chances of your containerized experiments overwriting or using wrong data.
Please note that some frameworks (e.g. PyTorch) use shared memory to share data between processes, so if multiprocessing is used the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host or --shm-size command line options to docker run.
docker run -it --ipc=host ufoym/deepo:cpu bash
You are now ready to begin your journey.
$ python
>>> import tensorflow
>>> import sonnet
>>> import torch
>>> import keras
>>> import mxnet
>>> import cntk
>>> import chainer
>>> import theano
>>> import lasagne
>>> import caffe
>>> import caffe2
$ caffe --version
caffe version 1.0.0
$ darknet
usage: darknet <function>
$ th
│ ______ __ | Torch7
│ /_ __/__ ________/ / | Scientific computing for Lua.
│ / / / _ \/ __/ __/ _ \ | Type ? for help
│ /_/ \___/_/ \__/_//_/ | https://github.com/torch
│ | http://torch.ch
│
│th>
Customization
Note that docker pull ufoym/deepo mentioned in Quick Start will give you a standard image containing all available deep learning frameworks. You can customize your own environment as well.
Unhappy with all-in-one solution?
If you prefer a specific framework rather than an all-in-one image, just append a tag with the name of the framework. Take tensorflow for example:
docker pull ufoym/deepo:tensorflow
Jupyter support
Step 1. pull the image with jupyter support
docker pull ufoym/deepo:all-jupyter
Step 2. run the image
docker run --runtime=nvidia -it -p 8888:8888 --ipc=host ufoym/deepo:all-jupyter jupyter notebook --no-browser --ip=0.0.0.0 --allow-root --NotebookApp.token= --notebook-dir='/root'
Build your own customized image with Lego-like modules
Step 1. prepare generator
git clone https://github.com/ufoym/deepo.git
cd deepo/generator
Step 2. generate your customized Dockerfile
For example, if you like pytorch and lasagne, then
python generate.py Dockerfile pytorch lasagne
This should generate a Dockerfile that contains everything for building pytorch and lasagne. Note that the generator can handle automatic dependency processing and topologically sort the lists. So you don’t need to worry about missing dependencies and the list order.
You can also specify the version of Python:
python generate.py Dockerfile pytorch lasagne python==3.6
Step 3. build your Dockerfile
docker build -t my/deepo .
This may take several minutes as it compiles a few libraries from scratch.
Comparison to alternatives
| . | modern-deep-learning | dl-docker | jupyter-deeplearning | Deepo |
|---|---|---|---|---|
| ubuntu | 16.04 | 14.04 | 14.04 | 18.04 |
| cuda | X | 8.0 | 6.5-8.0 | 8.0-10.0/None |
| cudnn | X | v5 | v2-5 | v7 |
| onnx | X | X | X | O |
| theano | X | O | O | O |
| tensorflow | O | O | O | O |
| sonnet | X | X | X | O |
| pytorch | X | X | X | O |
| keras | O | O | O | O |
| lasagne | X | O | O | O |
| mxnet | X | X | X | O |
| cntk | X | X | X | O |
| chainer | X | X | X | O |
| caffe | O | O | O | O |
| caffe2 | X | X | X | O |
| torch | X | O | O | O |
| darknet | X | X | X | O |
Tags
Available Tags
| . | CUDA 10.0 / Python 3.6 | CPU-only / Python 3.6 |
|---|---|---|
| all-in-one | latest all all-py36 py36-cu100 all-py36-cu100 |
all-py36-cpu all-cpu py36-cpu cpu |
| all-in-one with jupyter | all-jupyter-py36-cu100 all-jupyter-py36 all-jupyter |
all-py36-jupyter-cpu py36-jupyter-cpu |
| Theano | theano-py36-cu100 theano-py36 theano |
theano-py36-cpu theano-cpu |
| TensorFlow | tensorflow-py36-cu100 tensorflow-py36 tensorflow |
tensorflow-py36-cputensorflow-cpu |
| Sonnet | sonnet-py36-cu100 sonnet-py36 sonnet |
sonnet-py36-cpu sonnet-cpu |
| PyTorch / Caffe2 | pytorch-py36-cu100 pytorch-py36pytorch |
pytorch-py36-cpu pytorch-cpu |
| Keras | keras-py36-cu100 keras-py36 keras |
keras-py36-cpu keras-cpu |
| Lasagne | lasagne-py36-cu100 lasagne-py36lasagne |
lasagne-py36-cpu lasagne-cpu |
| MXNet | mxnet-py36-cu100 mxnet-py36 mxnet |
mxnet-py36-cpu mxnet-cpu |
| CNTK | cntk-py36-cu100 cntk-py36 cntk |
cntk-py36-cpu cntk-cpu |
| Chainer | chainer-py36-cu100 chainer-py36chainer |
chainer-py36-cpu chainer-cpu |
| Caffe | caffe-py36-cu100 caffe-py36 caffe |
caffe-py36-cpu caffe-cpu |
| Torch | torch-cu100 torch |
torch-cpu |
| Darknet | darknet-cu100 darknet |
darknet-cpu |
Deprecated Tags
| . | CUDA 9.0 / Python 3.6 | CUDA 9.0 / Python 2.7 | CPU-only / Python 3.6 | CPU-only / Python 2.7 |
|---|---|---|---|---|
| all-in-one | py36-cu90 all-py36-cu90 |
all-py27-cu90all-py27 py27-cu90 |
all-py27-cpupy27-cpu |
|
| all-in-one with jupyter | all-jupyter-py36-cu90 |
all-py27-jupyter py27-jupyter |
all-py27-jupyter-cpu py27-jupyter-cpu |
|
| Theano | theano-py36-cu90 |
theano-py27-cu90 theano-py27 |
theano-py27-cpu |
|
| TensorFlow | tensorflow-py36-cu90 |
tensorflow-py27-cu90tensorflow-py27 |
tensorflow-py27-cpu |
|
| Sonnet | sonnet-py36-cu90 |
sonnet-py27-cu90 sonnet-py27 |
sonnet-py27-cpu |
|
| PyTorch | pytorch-py36-cu90 |
pytorch-py27-cu90 pytorch-py27 |
pytorch-py27-cpu |
|
| Keras | keras-py36-cu90 |
keras-py27-cu90keras-py27 |
keras-py27-cpu |
|
| Lasagne | lasagne-py36-cu90 |
lasagne-py27-cu90 lasagne-py27 |
lasagne-py27-cpu |
|
| MXNet | mxnet-py36-cu90 |
mxnet-py27-cu90mxnet-py27 |
mxnet-py27-cpu |
|
| CNTK | cntk-py36-cu90 |
cntk-py27-cu90cntk-py27 |
cntk-py27-cpu |
|
| Chainer | chainer-py36-cu90 |
chainer-py27-cu90 chainer-py27 |
chainer-py27-cpu |
|
| Caffe | caffe-py36-cu90 |
caffe-py27-cu90caffe-py27 |
caffe-py27-cpu |
|
| Caffe2 | caffe2-py36-cu90 caffe2-py36 caffe2 |
caffe2-py27-cu90 caffe2-py27 |
caffe2-py36-cpucaffe2-cpu |
caffe2-py27-cpu |
| Torch | torch-cu90 |
torch-cu90 torch |
torch-cpu |
|
| Darknet | darknet-cu90 |
darknet-cu90darknet |
darknet-cpu |
Citation
@misc{ming2017deepo,
author = {Ming Yang},
title = {Deepo: set up deep learning environment in a single command line.},
year = {2017},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/ufoym/deepo}}
}
Contributing
We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us.
Licensing
Deepo is MIT licensed.
Deepo的更多相关文章
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (一)ubuntu18.04配置n ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (三)配置远程桌面连接访问dock ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (二)nvidia docker配 ...
- Vmvare + Ubuntu 16.04环境搭建 + 相关软件安装配置笔记【深度学习】
前言 由于学习与工作的需要,加上之前配置好的vmmachines都损坏了,我就重新弄一个ubuntu虚拟机,配置一下环境,给自己留个记录 1.文件 2.配置过程 1.在Vmware中新建虚拟机,自定义 ...
- 教你如何用Docker快速搭建深度学习环境
本教程搭建集 Tensorflow.Keras.Coffe.PyTorch 等深度学习框架于一身的环境,及jupyter. 本教程使用nvidia-docker启动实例,通过本教程可以从一个全新的Ub ...
- [AI] 切换cuda版本的万金油
1. 环境 ubuntu16.04 GTX1080Ti x 4 nvidia-418 cuda-10.1 pytorch1.0.0 目标:在最新的显卡驱动下,使用不同版本的cuda和深度学习框架来执行 ...
- docker出现如下错误:Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running?
在docker中配置deepo时出现了错误: 在出现这个错误之前,我是先用如下命令查看NVIDIA-docker是否安装成功. docker run --runtime=nvidia --rm nvi ...
- 服务器搭建远程docker深度学习环境
服务器搭建远程docker深度学习环境 本文大部分内容参考知乎文章 Docker+PyCharm快速搭建机器学习开发环境 搭建过程中出现ssh连接问题可以查看最后的注意事项 Docker Docker ...
随机推荐
- Mysql数据库之调整最大连接数
.查看最大连接数 show variables like '%max_connections%'; 2.修改最大连接数 set GLOBAL max_connections = 200; 以下的文章主 ...
- wordpress怎么用AMP加速器呢
AMP项目(Accelerated Mobile Pages)是一个开放源代码计划,旨在为所有人打造更好的网络体验.借助该项目,用户可以打造出在各种设备和分发平台上都能始终如一地快速加载且效果出色的精 ...
- 01-docker入门-安装docker
注意: ubuntu 安装 docker前提是要替换好 Ubuntu 的安装源. 安装步骤: P1: 正常开始 sudo apt-get update sudo apt-get -y insta ...
- keil中使用——变参数宏__VA_ARGS__
本文说的__VA_ARGS__,就是一个可变参数宏,与printf中可变参数的宏定义一个道理,是新C99规范中增加的. __VA_ARGS__详情内容 1.关于__VA_ARGS__ __VA_ARG ...
- 【java】String与Date转换
String转Date String date=""; SimpleDateFormat format=new SimpleDateFo ...
- FFT学习
看了一天的多项式的内容,看博客的时候好像还是那么回事,一看题,哇塞,发现我其实连卷积是啥都没看懂. qtdydb,背板子. 不知道卷积是啥就很伤了. P3803 [模板]多项式乘法(FFT) #inc ...
- django_settings源码解析
目录 配置文件插拔式设计: 简单版: 复杂版 importlib 与`__import__的区别: 配置文件插拔式设计: 项目配置文件插拔式设计: 基于django settings源码实现自己项目配 ...
- python总结五
1.is和==的区别:官方文档解释:is表示的是对象标识符,而==表示的是相等equal,is的作用是用来检查对象的标识符是否一致,也就是两个对象在内存中的地址是否一样 而==是用来检查两个对象是否相 ...
- List中的ArrayList和LinkedList源码分析
List是在面试中经常会问的一点,在我们面试中知道的仅仅是List是单列集合Collection下的一个实现类, List的实现接口又有几个,一个是ArrayList,还有一个是LinkedLis ...
- barbor部署
harbor 部署介绍: 1.版本信息 系统 :Centos 7.5 版本: harbor-offline-installer-v1.8.1 docker :docker-ce-18.06.2.ce- ...