Deepo
Deepo is a series of Docker images that
- allows you to quickly set up your deep learning research environment
- supports almost all commonly used deep learning frameworks
- supports GPU acceleration (CUDA and cuDNN included), also works in CPU-only mode
- works on Linux (CPU version/GPU version), Windows (CPU version) and OS X (CPU version)
and their Dockerfile generator that
- allows you to customize your own environment with Lego-like modules
- automatically resolves the dependencies for you
GPU Version
Installation
Step 1. Install Docker and nvidia-docker.
Step 2. Obtain the all-in-one image from Docker Hub
docker pull ufoym/deepo
For users in China who may suffer from slow speeds when pulling the image from the public Docker registry, you can pull deepo images from the China registry mirror by specifying the full path, including the registry, in your docker pull command, for example:
docker pull registry.docker-cn.com/ufoym/deepo
or
docker pull hub-mirror.c.163.com/ufoym/deepo
or
docker pull docker.mirrors.ustc.edu.cn/ufoym/deepo
Usage
Now you can try this command:
docker run --runtime=nvidia --rm ufoym/deepo nvidia-smi
This should work and enables Deepo to use the GPU from inside a docker container. If this does not work, search the issues section on the nvidia-docker GitHub – many solutions are already documented. To get an interactive shell to a container that will not be automatically deleted after you exit do
docker run --runtime=nvidia -it ufoym/deepo bash
If you want to share your data and configurations between the host (your machine or VM) and the container in which you are using Deepo, use the -v option, e.g.
docker run --runtime=nvidia -it -v /host/data:/data -v /host/config:/config ufoym/deepo bash
This will make /host/data from the host visible as /data in the container, and /host/config as /config. Such isolation reduces the chances of your containerized experiments overwriting or using wrong data.
Please note that some frameworks (e.g. PyTorch) use shared memory to share data between processes, so if multiprocessing is used the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host or --shm-size command line options to docker run.
docker run --runtime=nvidia -it --ipc=host ufoym/deepo bash
CPU Version
Installation
Step 1. Install Docker.
Step 2. Obtain the all-in-one image from Docker Hub
docker pull ufoym/deepo:cpu
Usage
Now you can try this command:
docker run -it ufoym/deepo:cpu bash
If you want to share your data and configurations between the host (your machine or VM) and the container in which you are using Deepo, use the -v option, e.g.
docker run -it -v /host/data:/data -v /host/config:/config ufoym/deepo:cpu bash
This will make /host/data from the host visible as /data in the container, and /host/config as /config. Such isolation reduces the chances of your containerized experiments overwriting or using wrong data.
Please note that some frameworks (e.g. PyTorch) use shared memory to share data between processes, so if multiprocessing is used the default shared memory segment size that container runs with is not enough, and you should increase shared memory size either with --ipc=host or --shm-size command line options to docker run.
docker run -it --ipc=host ufoym/deepo:cpu bash
You are now ready to begin your journey.
$ python
>>> import tensorflow
>>> import sonnet
>>> import torch
>>> import keras
>>> import mxnet
>>> import cntk
>>> import chainer
>>> import theano
>>> import lasagne
>>> import caffe
>>> import caffe2
$ caffe --version
caffe version 1.0.0
$ darknet
usage: darknet <function>
$ th
│ ______ __ | Torch7
│ /_ __/__ ________/ / | Scientific computing for Lua.
│ / / / _ \/ __/ __/ _ \ | Type ? for help
│ /_/ \___/_/ \__/_//_/ | https://github.com/torch
│ | http://torch.ch
│
│th>
Customization
Note that docker pull ufoym/deepo mentioned in Quick Start will give you a standard image containing all available deep learning frameworks. You can customize your own environment as well.
Unhappy with all-in-one solution?
If you prefer a specific framework rather than an all-in-one image, just append a tag with the name of the framework. Take tensorflow for example:
docker pull ufoym/deepo:tensorflow
Jupyter support
Step 1. pull the image with jupyter support
docker pull ufoym/deepo:all-jupyter
Step 2. run the image
docker run --runtime=nvidia -it -p 8888:8888 --ipc=host ufoym/deepo:all-jupyter jupyter notebook --no-browser --ip=0.0.0.0 --allow-root --NotebookApp.token= --notebook-dir='/root'
Build your own customized image with Lego-like modules
Step 1. prepare generator
git clone https://github.com/ufoym/deepo.git
cd deepo/generator
Step 2. generate your customized Dockerfile
For example, if you like pytorch and lasagne, then
python generate.py Dockerfile pytorch lasagne
This should generate a Dockerfile that contains everything for building pytorch and lasagne. Note that the generator can handle automatic dependency processing and topologically sort the lists. So you don’t need to worry about missing dependencies and the list order.
You can also specify the version of Python:
python generate.py Dockerfile pytorch lasagne python==3.6
Step 3. build your Dockerfile
docker build -t my/deepo .
This may take several minutes as it compiles a few libraries from scratch.
Comparison to alternatives
| . | modern-deep-learning | dl-docker | jupyter-deeplearning | Deepo |
|---|---|---|---|---|
| ubuntu | 16.04 | 14.04 | 14.04 | 18.04 |
| cuda | X | 8.0 | 6.5-8.0 | 8.0-10.0/None |
| cudnn | X | v5 | v2-5 | v7 |
| onnx | X | X | X | O |
| theano | X | O | O | O |
| tensorflow | O | O | O | O |
| sonnet | X | X | X | O |
| pytorch | X | X | X | O |
| keras | O | O | O | O |
| lasagne | X | O | O | O |
| mxnet | X | X | X | O |
| cntk | X | X | X | O |
| chainer | X | X | X | O |
| caffe | O | O | O | O |
| caffe2 | X | X | X | O |
| torch | X | O | O | O |
| darknet | X | X | X | O |
Tags
Available Tags
| . | CUDA 10.0 / Python 3.6 | CPU-only / Python 3.6 |
|---|---|---|
| all-in-one | latest all all-py36 py36-cu100 all-py36-cu100 |
all-py36-cpu all-cpu py36-cpu cpu |
| all-in-one with jupyter | all-jupyter-py36-cu100 all-jupyter-py36 all-jupyter |
all-py36-jupyter-cpu py36-jupyter-cpu |
| Theano | theano-py36-cu100 theano-py36 theano |
theano-py36-cpu theano-cpu |
| TensorFlow | tensorflow-py36-cu100 tensorflow-py36 tensorflow |
tensorflow-py36-cputensorflow-cpu |
| Sonnet | sonnet-py36-cu100 sonnet-py36 sonnet |
sonnet-py36-cpu sonnet-cpu |
| PyTorch / Caffe2 | pytorch-py36-cu100 pytorch-py36pytorch |
pytorch-py36-cpu pytorch-cpu |
| Keras | keras-py36-cu100 keras-py36 keras |
keras-py36-cpu keras-cpu |
| Lasagne | lasagne-py36-cu100 lasagne-py36lasagne |
lasagne-py36-cpu lasagne-cpu |
| MXNet | mxnet-py36-cu100 mxnet-py36 mxnet |
mxnet-py36-cpu mxnet-cpu |
| CNTK | cntk-py36-cu100 cntk-py36 cntk |
cntk-py36-cpu cntk-cpu |
| Chainer | chainer-py36-cu100 chainer-py36chainer |
chainer-py36-cpu chainer-cpu |
| Caffe | caffe-py36-cu100 caffe-py36 caffe |
caffe-py36-cpu caffe-cpu |
| Torch | torch-cu100 torch |
torch-cpu |
| Darknet | darknet-cu100 darknet |
darknet-cpu |
Deprecated Tags
| . | CUDA 9.0 / Python 3.6 | CUDA 9.0 / Python 2.7 | CPU-only / Python 3.6 | CPU-only / Python 2.7 |
|---|---|---|---|---|
| all-in-one | py36-cu90 all-py36-cu90 |
all-py27-cu90all-py27 py27-cu90 |
all-py27-cpupy27-cpu |
|
| all-in-one with jupyter | all-jupyter-py36-cu90 |
all-py27-jupyter py27-jupyter |
all-py27-jupyter-cpu py27-jupyter-cpu |
|
| Theano | theano-py36-cu90 |
theano-py27-cu90 theano-py27 |
theano-py27-cpu |
|
| TensorFlow | tensorflow-py36-cu90 |
tensorflow-py27-cu90tensorflow-py27 |
tensorflow-py27-cpu |
|
| Sonnet | sonnet-py36-cu90 |
sonnet-py27-cu90 sonnet-py27 |
sonnet-py27-cpu |
|
| PyTorch | pytorch-py36-cu90 |
pytorch-py27-cu90 pytorch-py27 |
pytorch-py27-cpu |
|
| Keras | keras-py36-cu90 |
keras-py27-cu90keras-py27 |
keras-py27-cpu |
|
| Lasagne | lasagne-py36-cu90 |
lasagne-py27-cu90 lasagne-py27 |
lasagne-py27-cpu |
|
| MXNet | mxnet-py36-cu90 |
mxnet-py27-cu90mxnet-py27 |
mxnet-py27-cpu |
|
| CNTK | cntk-py36-cu90 |
cntk-py27-cu90cntk-py27 |
cntk-py27-cpu |
|
| Chainer | chainer-py36-cu90 |
chainer-py27-cu90 chainer-py27 |
chainer-py27-cpu |
|
| Caffe | caffe-py36-cu90 |
caffe-py27-cu90caffe-py27 |
caffe-py27-cpu |
|
| Caffe2 | caffe2-py36-cu90 caffe2-py36 caffe2 |
caffe2-py27-cu90 caffe2-py27 |
caffe2-py36-cpucaffe2-cpu |
caffe2-py27-cpu |
| Torch | torch-cu90 |
torch-cu90 torch |
torch-cpu |
|
| Darknet | darknet-cu90 |
darknet-cu90darknet |
darknet-cpu |
Citation
@misc{ming2017deepo,
author = {Ming Yang},
title = {Deepo: set up deep learning environment in a single command line.},
year = {2017},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/ufoym/deepo}}
}
Contributing
We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us.
Licensing
Deepo is MIT licensed.
Deepo的更多相关文章
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(一) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (一)ubuntu18.04配置n ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(三) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (三)配置远程桌面连接访问dock ...
- ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二)
ubuntu18.04配置nvidia docker和远程连接ssh+远程桌面连接(二) 本教程适用于想要在远程服务器上配置docker图形界面用于深度学习的用户. (二)nvidia docker配 ...
- Vmvare + Ubuntu 16.04环境搭建 + 相关软件安装配置笔记【深度学习】
前言 由于学习与工作的需要,加上之前配置好的vmmachines都损坏了,我就重新弄一个ubuntu虚拟机,配置一下环境,给自己留个记录 1.文件 2.配置过程 1.在Vmware中新建虚拟机,自定义 ...
- 教你如何用Docker快速搭建深度学习环境
本教程搭建集 Tensorflow.Keras.Coffe.PyTorch 等深度学习框架于一身的环境,及jupyter. 本教程使用nvidia-docker启动实例,通过本教程可以从一个全新的Ub ...
- [AI] 切换cuda版本的万金油
1. 环境 ubuntu16.04 GTX1080Ti x 4 nvidia-418 cuda-10.1 pytorch1.0.0 目标:在最新的显卡驱动下,使用不同版本的cuda和深度学习框架来执行 ...
- docker出现如下错误:Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running?
在docker中配置deepo时出现了错误: 在出现这个错误之前,我是先用如下命令查看NVIDIA-docker是否安装成功. docker run --runtime=nvidia --rm nvi ...
- 服务器搭建远程docker深度学习环境
服务器搭建远程docker深度学习环境 本文大部分内容参考知乎文章 Docker+PyCharm快速搭建机器学习开发环境 搭建过程中出现ssh连接问题可以查看最后的注意事项 Docker Docker ...
随机推荐
- JfreeChart 乱码问题处理
在前面之间加上下面这段代码即可. //创建主题样式 StandardChartTheme standardChartTheme=new StandardChartTheme("CN" ...
- linux 以导入文件形式添加定时任务(crontab)时需要注意的坑
在实际操作过程中发现,使用导入文件形式添加定时任务时,会将用户已有的定时任务全部覆盖清理(先清空,再重新导入),所以在使用文件导入定时任务时,需要先将已有定时任务导出,然后将新任务进行追加到已有定时任 ...
- selenium webdriver使用的一些小技巧(持续更新中)
1.开始结束时间只支持控件选择,不支持填写,怎么办? 如下图: 解决方案: 用javaScipt把开始结束时间的reaonly属性去除,然后再输入,举例如下 /** * 输入开始日期 ...
- cookies , sessionStorage 及 localStorage 的初步的区别
cookies 保存在浏览器中,关闭浏览器后再次打开,任然存在,当然可能存在一定的有效期.(仅限存在同一台电脑,同一个浏览器中) Session依赖Cookie!! sessionStorage ...
- Windbg源代码窗口的使用
在 WinDbg 中,源窗口显示已加载到调试器中的源文件. 如何打开源代码窗口 通过菜单File--->Open Source File打开源代码文件,窗口随之打开 通过快捷键Ctrl+O 通过 ...
- django -- 安装django
安装 通过cmd进行安装 pip3 install django==1.11.11 创建django项目 通过命令行进行创建 下面的命令创建了一个名为"mydjango"的Djan ...
- 洛谷 p1516 青蛙的约会 题解
dalao们真是太强了,吊打我无名蒟蒻 我连题解都看不懂,在此篇题解中,我尽量用语言描述,不用公式推导(dalao喜欢看公式的话绕道,这篇题解留给像我一样弱的) 进入正题 如果不会扩展欧里几德的话请先 ...
- sql语句之union与join的区别
union查询: 使用 union 可以将多个select语句的查询结果组合起来. 语法: select 字段1,字段2 from table1 union select 字段1,字段2 from t ...
- jdk 1.7新特性
JDK1.7新特性 1,switch中可以使用字串了String s = "test"; switch (s) { case "test" : ...
- Postman接口测试【3】_自动添加随笔
一.抓取博客园编写博客地址 1.通过Charles抓取,获取到编写博客接口地址和接口的参数 二.Postman请求接口 打开Postman,输入上面抓到的接口地址,接口类型为POST,请求参数为x-w ...