08-人脸识别-FaceNet-classify.py代码阅读(说明见注释)
"""An example of how to use your own dataset to train a classifier that recognizes people.
"""
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE. # @ 调用格式:
# @
# @ 训练模型记住人脸(不是训练网络,网络在这之前已经先训练好了)。
# @ ../lfw/ 是lfw数据集经过 mtcnn 截取以后的结果。否则会影响效果(去除数据集中的人脸外部干扰)
# @ python classifier.py TRAIN ../lfw/ 20170511-185253/ train_20180419_2048.pkl
# @
# @ 测试模型记住人脸的结果。(../data 是测试用的图的路径。)
# @ python classifier.py CLASSIFY ../data/ 20170511-185253/ train_20180419_2048.pkl from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import tensorflow as tf
import numpy as np
import argparse
import facenet
import os
import sys
import math
import pickle
from sklearn.svm import SVC # @ args内中参数见函数 parse_arguments
def main(args):
# @ 声明一个计算图,都这么写,没有就是默认一个。
with tf.Graph().as_default():
# @ 声明一个 Session
with tf.Session() as sess: # @ Part I
# @ 这部分是计算人脸的 embedding 特征。费时。
# @ # @ 加随机数seed,调用np.random.random()的结果都会相同。
np.random.seed(seed=args.seed) if args.use_split_dataset:
dataset_tmp = facenet.get_dataset(args.data_dir)
train_set, test_set = split_dataset(dataset_tmp, args.min_nrof_images_per_class, args.nrof_train_images_per_class)
if (args.mode=='TRAIN'):
dataset = train_set
elif (args.mode=='CLASSIFY'):
dataset = test_set
else:
dataset = facenet.get_dataset(args.data_dir) # Check that there are at least one training image per class
# @ cls.image_paths 是每张图的路径,包含文件名。
for cls in dataset:
assert(len(cls.image_paths)>0, 'There must be at least one image for each class in the dataset') # @ 分离出图片路径名paths,和类型labels(人脸所属人名)
paths, labels = facenet.get_image_paths_and_labels(dataset) print('Number of classes: %d' % len(dataset))
print('Number of images: %d' % len(paths)) # Load the model
# @ 这里加的 model 使用于生成人脸的 embedding 特征的网络。
# @ 这个网络是事先已经生成好的。
# @ 网络可以根据运行的平台,设计成不同大小。比如基于GoogleNet/AlexNet等
print('Loading feature extraction model')
facenet.load_model(args.model) # Get input and output tensors
# @ TensorFlow的参数准备。embeddings 是网络的输出,是后续分类的输入。
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
embedding_size = embeddings.get_shape()[1] # Run forward pass to calculate embeddings
print('Calculating features for images')
nrof_images = len(paths) # @ 图片总数
nrof_batches_per_epoch = int(math.ceil(1.0*nrof_images / args.batch_size))
emb_array = np.zeros((nrof_images, embedding_size))
for i in range(nrof_batches_per_epoch):
start_index = i*args.batch_size
end_index = min((i+1)*args.batch_size, nrof_images)
paths_batch = paths[start_index:end_index]
images = facenet.load_data(paths_batch, False, False, args.image_size)
feed_dict = { images_placeholder:images, phase_train_placeholder:False }
emb_array[start_index:end_index,:] = sess.run(embeddings, feed_dict=feed_dict) # @ emb_array 是 embedding 结果。一个 embedding 有 18 维。
# @ 接下来就是用机器学习的方法分类。
classifier_filename_exp = os.path.expanduser(args.classifier_filename) # @ Part II 也较费时。
# @ 这部分是训练分类人脸的机器学习模型,这里使用的SVC,是SVM的一种。
# @ 若是 CLASSIFY ,则是加载训练结果,建立 SVC 分类器。 if (args.mode=='TRAIN'):
# Train classifier
# @ SVC是SVM的一种Type,是用来的做分类的;同样还有SVR,是SVM的另一种Type,是用来的做回归的。
print('Training classifier')
model = SVC(kernel='linear', probability=True)
model.fit(emb_array, labels) # @ 训练过程 # @ 训练结束,保存数据
# Create a list of class names
class_names = [ cls.name.replace('_', ' ') for cls in dataset] # Saving classifier model
with open(classifier_filename_exp, 'wb') as outfile:
pickle.dump((model, class_names), outfile)
print('Saved classifier model to file "%s"' % classifier_filename_exp) elif (args.mode=='CLASSIFY'):
# Classify images
print('Testing classifier')
# @ 加载数据,建立分类器
with open(classifier_filename_exp, 'rb') as infile:
(model, class_names) = pickle.load(infile) print('Loaded classifier model from file "%s"' % classifier_filename_exp) # @ 预测,标签结果应该是 one_hot 的。
predictions = model.predict_proba(emb_array)
best_class_indices = np.argmax(predictions, axis=1) # @ 输出每列最大的序号。
best_class_probabilities = predictions[np.arange(len(best_class_indices)), best_class_indices] for i in range(len(best_class_indices)):
print('%4d %s: %.3f' % (i, class_names[best_class_indices[i]], best_class_probabilities[i])) # @ 评估结果。labels 是测试集的实际结果,best_class_indices是预测结果。
accuracy = np.mean(np.equal(best_class_indices, labels))
print('Accuracy: %.3f' % accuracy) # @ 将数据集分成训练集和测试集
def split_dataset(dataset, min_nrof_images_per_class, nrof_train_images_per_class):
train_set = []
test_set = []
for cls in dataset:
paths = cls.image_paths
# Remove classes with less than min_nrof_images_per_class
if len(paths)>=min_nrof_images_per_class:
np.random.shuffle(paths)
train_set.append(facenet.ImageClass(cls.name, paths[:nrof_train_images_per_class]))
test_set.append(facenet.ImageClass(cls.name, paths[nrof_train_images_per_class:]))
return train_set, test_set # @ 命令行参数,使用的系统库 argparse
# @ ** 写法值得记住 **
def parse_arguments(argv):
parser = argparse.ArgumentParser() parser.add_argument('mode', type=str, choices=['TRAIN', 'CLASSIFY'],
help='Indicates if a new classifier should be trained or a classification ' +
'model should be used for classification', default='CLASSIFY')
parser.add_argument('data_dir', type=str,
help='Path to the data directory containing aligned LFW face patches.')
parser.add_argument('model', type=str,
help='Could be either a directory containing the meta_file and ckpt_file or a model protobuf (.pb) file')
parser.add_argument('classifier_filename',
help='Classifier model file name as a pickle (.pkl) file. ' +
'For training this is the output and for classification this is an input.')
parser.add_argument('--use_split_dataset',
help='Indicates that the dataset specified by data_dir should be split into a training and test set. ' +
'Otherwise a separate test set can be specified using the test_data_dir option.', action='store_true')
parser.add_argument('--test_data_dir', type=str,
help='Path to the test data directory containing aligned images used for testing.')
parser.add_argument('--batch_size', type=int,
help='Number of images to process in a batch.', default=90)
parser.add_argument('--image_size', type=int,
help='Image size (height, width) in pixels.', default=160)
parser.add_argument('--seed', type=int,
help='Random seed.', default=666)
parser.add_argument('--min_nrof_images_per_class', type=int,
help='Only include classes with at least this number of images in the dataset', default=20)
parser.add_argument('--nrof_train_images_per_class', type=int,
help='Use this number of images from each class for training and the rest for testing', default=10) return parser.parse_args(argv) # @ 主函数
# @ sys.argv[1:] 就是命令行输入的 classify.py 后面的所有字符串,以空格分隔。
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))
08-人脸识别-FaceNet-classify.py代码阅读(说明见注释)的更多相关文章
- TensorFlow环境 人脸识别 FaceNet 应用(一)验证测试集
TensorFlow环境 人脸识别 FaceNet 应用(一)验证测试集 前提是TensorFlow环境以及相关的依赖环境已经安装,可以正常运行. 一.下载FaceNet源代码工程 git clone ...
- 第三十七节、人脸检测MTCNN和人脸识别Facenet(附源码)
在说到人脸检测我们首先会想到利用Harr特征提取和Adaboost分类器进行人脸检测(有兴趣的可以去一看这篇博客第九节.人脸检测之Haar分类器),其检测效果也是不错的,但是目前人脸检测的应用场景逐渐 ...
- 人脸识别FaceNet+TensorFlow
一.本文目标 利用facenet源码实现从摄像头读取视频,实时检测并识别视频中的人脸.换句话说:把facenet源码中contributed目录下的real_time_face_recognition ...
- 基于 Python + OpenCV 进行人脸识别,视频追踪代码全注释
先来普及一下概念, 计算机对人脸是如何识别的呢? 或者说图像是如何识别的.主要是获取单张图片的特征值记录了特征值以后,如果下一张图片来了以后两张图片特征值进行对比,如果相似度很高那么计算机就认定这两个 ...
- Python的开源人脸识别库:离线识别率高达99.38%
Python的开源人脸识别库:离线识别率高达99.38% github源码:https://github.com/ageitgey/face_recognition#face-recognitio ...
- Python的开源人脸识别库:离线识别率高达99.38%(附源码)
Python的开源人脸识别库:离线识别率高达99.38%(附源码) 转https://cloud.tencent.com/developer/article/1359073 11.11 智慧上云 ...
- html5与EmguCV前后端实现——人脸识别篇(一)
上个月因为出差的关系,断更了很久,为了补偿大家长久的等待,送上一个新的系列,之前几个系列也会抽空继续更新. 大概半年多前吧,因为工作需要,我开始研究图像识别技术.OpenCV在这方面已经有了很多技术积 ...
- facenet 人脸识别(二)——创建人脸库搭建人脸识别系统
搭建人脸库 选择的方式是从百度下载明星照片 照片下载,downloadImageByBaidu.py # coding=utf-8 """ 爬取百度图片的高清原图 &qu ...
- opencv face-detection 代码分析 (1)人脸识别后的数据
2014,3,16 老师的工作建议如下: 1. 与四民沟通下,把openCV这边的源代码和调用接口发给四民同时抄送给我. 2. 根据openCV的实时检测结果,实现对屏幕的调整(下周一前基本实 ...
随机推荐
- luogu P5606 小 K 与毕业旅行 - 构造 - 多项式
题目传送门 传送门 先考虑 $a_i > 0$ 的情况.考虑构造这样一个顺序:$a_i$ 要么和后面的数的乘积都大于 $w$ 要么都小于等于 $w$. 这个构造可以这样做: vector< ...
- 原创|强大!Nginx 配置在线一键生成“神器”
Nginx作为一个轻量级的HTTP服务器,相比Apache优势也是比较明显的,在性能上它占用资源少,能支持更高更多的并发连接,从而达到提高访问效率;在功能上它是一款非常优秀的代理服务器与负载均衡服务器 ...
- contentType: 'application/json' C#后台怎么处理
contentType: 'application/json' 的处理如下: $(function () { $.ajax({ 'url': "/Home/Send2SHengPi" ...
- 路径规划基础A*算法
1,Dijkstra’s 算法 一种发散性寻找最短路径算法. 由起点开始向四周开始发散,直到碰到目标点为止.这时就是最短路径.优点:能找到与目标点的最短路径:缺点:搜索花费的时间会比较长. 2,Gr ...
- Windows 配置Apache+CGI
首先还是先在官网下载Apache,版本为Apache 2.4.26 x64,下载64位的地址为:http://www.apachehaus.com/cgi-bin/download.plx 下载完成后 ...
- 【记录】【idea】【mysql】Server returns invalid timezone. Go to 'Advanced' tab and set 'serverTimezone' property manually.解决问题
idea连接mysql报错Server returns invalid timezone. Go to 'Advanced' tab and set 'serverTimezone' property ...
- IDEA整合GIT所有操作
IDEA整合GIT操作 1.1 配置Idea集成Git 1.2 在使用SSH key 创建公钥私钥,上传公钥到github (1).点击开始菜单-->所有程序--->git选择 Git B ...
- Vue.js 源码分析(十三) 基础篇 组件 props属性详解
父组件通过props属性向子组件传递数据,定义组件的时候可以定义一个props属性,值可以是一个字符串数组或一个对象. 例如: <!DOCTYPE html> <html lang= ...
- Prometheus K8S部署
Prometheus K8S部署 部署方式:https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/prometheus ...
- 一个小巧,也很nice的“小日历”--一个Android App
一个小巧也很Nice的“小日历” 背景 因为,常用日历记一些事情,Android自带的日历,如果有事情,会显示一个小点,然后点击进去后才能看到事情的具体内容,不是很方便. 所以,写了一个“小日历” 特 ...