VIJOS-P1446 最短路上的统计
JDOJ 1523: VIJOS-P1446 最短路上的统计
Description
一个无向图上,没有自环,所有边的权值均为1,对于一个点对(a,b),我们要把所有a与b之间所有最短路上的点的总个数输出。
Input
第一行n,m,表示n个点,m条边 接下来m行,每行两个数a,b,表示a,b之间有条边 在下来一个数p,表示问题的个数 接下来p行,每行两个数a,b,表示询问a,b
Output
对于每个询问,输出一个数c,表示a,b之间最短路上点的总个数
Sample Input
5 6 1 2 1 3 2 3 2 4 3 5 4 5 3 2 5 5 1 2 4
Sample Output
4 3 2
HINT
范围:n< =100,p< =5000
题解:
一看是任意两点之间的最短路,并且n<=100。那么就可以果断地用Floyd算法了。
如果还没有学习Floyd算法,请移步至我的最短路算法的讲解。
那么现在不是简单地让我们求任意两点最短路,而是要我们统计最短路点的个数。
这样的话怎么处理呢?
先跑最短路,然后我们继续用Floyd思想,枚举断点,如果这个端点在最短路上,那么一定有:这个点到最短路两个端点的距离和等于这个最短路的长度。
真相大白。
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,p,ans;
int map[110][110];
int main()
{
scanf("%d%d",&n,&m);
memset(map,0x3f,sizeof(map));
for(int i=1;i<=n;i++)
map[i][i]=0;
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
map[x][y]=map[y][x]=1;
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
map[i][j]=min(map[i][k]+map[k][j],map[i][j]);
scanf("%d",&p);
while(p--)
{
ans=0;
int a,b;
scanf("%d%d",&a,&b);
for(int k=1;k<=n;k++)
if(map[a][k]+map[k][b]==map[a][b] || map[b][k]+map[k][a]==map[a][b])
ans++;
printf("%d\n",ans);
}
return 0;
}
VIJOS-P1446 最短路上的统计的更多相关文章
- Crowd Control(输出不在最大值最小化的最短路上的边)
题意: 就是求完最大值最小化 然后输出在这条最大值最小化的最短路上的点的不在最短路上的边,emm.... 解析: 很明显,先套spfa最大值最小化模板,emm... 在更新d的时候 用一个pre去记 ...
- hdu3986 spfa + 枚举最短路上的边
题意: 删除一条边后,求最短路中最长的那个(敌人搞破坏). 思路: 如果你是敌人你肯定删除最短路上的边,删除别的边最短路的值是不会变的,所以直接枚举最短路上的边去删除,取得最大的就行了... #inc ...
- vijos - P1122出栈序列统计 (卡特兰数)
P1122出栈序列统计 未递交 标签:NOIP普及组2003[显示标签] 描写叙述 栈是经常使用的一种数据结构,有n令元素在栈顶端一側等待进栈,栈顶端还有一側是出栈序列. 你已经知道栈的操作有两·种: ...
- 有关最短路上的第k小/大值的总结
1.USACO08JAN Telephone Lines 题面 由于问的是最大值最小,所以二分加验证就好了 比较显然的,题干问的是第k+1长的路最短: 那么二分答案是正确的方向: 但是怎么验证? 我 ...
- (poj 2253) Frogger 最短路上的最大路段
题目链接:http://poj.org/problem?id=2253 Description Freddy Frog is sitting on a stone in the middle of a ...
- Graph Theory の brief introduction
一. 图的概念 1.定义 某类具体事物(顶点)和这些事物之间的联系(边),由顶点(vertex)和边(edge)组成, 顶点的集合V,边的集合E,图记为G = (V,E) 2.分类 1 ...
- 201800624模拟赛T2——回家路上
题目描述 很多学生都抱怨浪费在回家路上的时间太长.这天dongdong刚走出学校大门,就听说某段路在施工(但不知道是哪条路),有可能导致他回家的时间会变长. Dongdong给出了一张地图,图中标号为 ...
- BZOJ1975[Sdoi2010]魔法猪学院——可持久化可并堆+最短路树
题目描述 iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪世界的世界本原有了很多的了解:众所周知,世界是由元素构成的:元素与 ...
- [Codeforces 1005F]Berland and the Shortest Paths(最短路树+dfs)
[Codeforces 1005F]Berland and the Shortest Paths(最短路树+dfs) 题面 题意:给你一个无向图,1为起点,求生成树让起点到其他个点的距离最小,距离最小 ...
随机推荐
- C#自定义特性的使用
特性类的使用过程: 第一步:定义一个特性类,定义一些成员来包含验证时需要的数据:第二步:创建特性类实例:创建一个特性类的实例,里面包含着验证某一个属性或者字段需要的数据.将该实例关联到某个属性上面.第 ...
- fiddler抓包-2-5分钟学会手机端抓包
前言 小伙伴们在前篇是否学会了简单的电脑web或其它软件抓包了呢?今天小编给大家带来的是fiddler设置手机代理抓手机端的数据包. 大致流程如下: 1.准备一台wifi功能正常的真机或虚拟机:2.设 ...
- # Leetcode 14:Longest Common Prefix 最长公共前缀
公众号:爱写bug Write a function to find the longest common prefix string amongst an array of strings. If ...
- update改数据详解
update修改数据的要素 : 改哪张表? 改哪几列的值? 分别改成什么值? 在哪些行生效?(这个很重要,否则所有行都会受影响) mysql> update class ; where 表达式 ...
- 网络基础-------------给电脑设置IP
ip 是每一台电脑进入互联网的一个必备钥匙,没有它就不能体会冲浪的乐趣,当我们使用电脑连接无线时我们就会被自动分配一个ip地址(DHCP),这样我们就可以凭借这个IPV4地址来进行冲浪了,但是自动分配 ...
- SpringBoot整合mybatis及注意事项
SpringBoot整合mybatis及注意事项 主要步骤 添加依赖 mybatis 在配置文件中配置数据源信息 编写pojo mapper接口 mapeer映射文件 手动配置mybatis的包扫描 ...
- Sitecore个性化 - 什么是历史个性化?
顾名思义,Sitecore中的历史个性化允许您根据访问者过去在您网站上的行为来设置个性化规则. 许多组织选择Sitecore 作为其高级个性化功能的网站平台 - 历史个性化只是一种方法. 查看我们关 ...
- idea gradle项目导入
然后要选择正确的gradle版本: 每个开源项目的gradle版本,这个很重要.因为每一个gradle版本都不同.
- scala中val和var的区别
1:内容是否可变:val修饰的是不可变的,var修饰是可变的 2:val修饰的变量在编译后类似于java中的中的变量被final修饰 3:lazy修饰符可以修饰变量,但是这个变量必须是val修饰的 p ...
- DNS 服务器无法正常解析时,可以尝试这样!
DNS 服务器无法正常解析时,可以尝试这样! ========================================================================联通:12 ...