VIJOS-P1446 最短路上的统计
JDOJ 1523: VIJOS-P1446 最短路上的统计
Description
一个无向图上,没有自环,所有边的权值均为1,对于一个点对(a,b),我们要把所有a与b之间所有最短路上的点的总个数输出。
Input
第一行n,m,表示n个点,m条边 接下来m行,每行两个数a,b,表示a,b之间有条边 在下来一个数p,表示问题的个数 接下来p行,每行两个数a,b,表示询问a,b
Output
对于每个询问,输出一个数c,表示a,b之间最短路上点的总个数
Sample Input
5 6 1 2 1 3 2 3 2 4 3 5 4 5 3 2 5 5 1 2 4
Sample Output
4 3 2
HINT
范围:n< =100,p< =5000
题解:
一看是任意两点之间的最短路,并且n<=100。那么就可以果断地用Floyd算法了。
如果还没有学习Floyd算法,请移步至我的最短路算法的讲解。
那么现在不是简单地让我们求任意两点最短路,而是要我们统计最短路点的个数。
这样的话怎么处理呢?
先跑最短路,然后我们继续用Floyd思想,枚举断点,如果这个端点在最短路上,那么一定有:这个点到最短路两个端点的距离和等于这个最短路的长度。
真相大白。
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,p,ans;
int map[110][110];
int main()
{
scanf("%d%d",&n,&m);
memset(map,0x3f,sizeof(map));
for(int i=1;i<=n;i++)
map[i][i]=0;
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
map[x][y]=map[y][x]=1;
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
map[i][j]=min(map[i][k]+map[k][j],map[i][j]);
scanf("%d",&p);
while(p--)
{
ans=0;
int a,b;
scanf("%d%d",&a,&b);
for(int k=1;k<=n;k++)
if(map[a][k]+map[k][b]==map[a][b] || map[b][k]+map[k][a]==map[a][b])
ans++;
printf("%d\n",ans);
}
return 0;
}
VIJOS-P1446 最短路上的统计的更多相关文章
- Crowd Control(输出不在最大值最小化的最短路上的边)
题意: 就是求完最大值最小化 然后输出在这条最大值最小化的最短路上的点的不在最短路上的边,emm.... 解析: 很明显,先套spfa最大值最小化模板,emm... 在更新d的时候 用一个pre去记 ...
- hdu3986 spfa + 枚举最短路上的边
题意: 删除一条边后,求最短路中最长的那个(敌人搞破坏). 思路: 如果你是敌人你肯定删除最短路上的边,删除别的边最短路的值是不会变的,所以直接枚举最短路上的边去删除,取得最大的就行了... #inc ...
- vijos - P1122出栈序列统计 (卡特兰数)
P1122出栈序列统计 未递交 标签:NOIP普及组2003[显示标签] 描写叙述 栈是经常使用的一种数据结构,有n令元素在栈顶端一側等待进栈,栈顶端还有一側是出栈序列. 你已经知道栈的操作有两·种: ...
- 有关最短路上的第k小/大值的总结
1.USACO08JAN Telephone Lines 题面 由于问的是最大值最小,所以二分加验证就好了 比较显然的,题干问的是第k+1长的路最短: 那么二分答案是正确的方向: 但是怎么验证? 我 ...
- (poj 2253) Frogger 最短路上的最大路段
题目链接:http://poj.org/problem?id=2253 Description Freddy Frog is sitting on a stone in the middle of a ...
- Graph Theory の brief introduction
一. 图的概念 1.定义 某类具体事物(顶点)和这些事物之间的联系(边),由顶点(vertex)和边(edge)组成, 顶点的集合V,边的集合E,图记为G = (V,E) 2.分类 1 ...
- 201800624模拟赛T2——回家路上
题目描述 很多学生都抱怨浪费在回家路上的时间太长.这天dongdong刚走出学校大门,就听说某段路在施工(但不知道是哪条路),有可能导致他回家的时间会变长. Dongdong给出了一张地图,图中标号为 ...
- BZOJ1975[Sdoi2010]魔法猪学院——可持久化可并堆+最短路树
题目描述 iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪世界的世界本原有了很多的了解:众所周知,世界是由元素构成的:元素与 ...
- [Codeforces 1005F]Berland and the Shortest Paths(最短路树+dfs)
[Codeforces 1005F]Berland and the Shortest Paths(最短路树+dfs) 题面 题意:给你一个无向图,1为起点,求生成树让起点到其他个点的距离最小,距离最小 ...
随机推荐
- 阅读java编程思想的总结(一)
学而不思则罔,思而不学则殆 一.对象(Object) 1.机器模型(方案空间),实际解决问题的问题模型(问题空间). 2.我们将问题空间中的元素以及它们在方案空间的表示物称为“对象”(Object). ...
- oracle-报错 RMAN-03002,RMAN-06172
RMAN> restore standby controlfile from "/data/oracle/contral.ctl"; Starting restore at ...
- MYSQL插入千万数据的工具类
建表语句 CREATE TABLE `test_id` ( `id` int(10) NOT NULL AUTO_INCREMENT COMMENT '主键自增非空', `name` varchar( ...
- 目标检测 <二> TensorFlow安装
一:创建TensorFlow工作环境目录 1. 在anconda安装目录下找到envs目录然后进入 2. 在当前目录下创建一个文件夹改名为tensorflow 二: 创建TensorFlow工作环境 ...
- Java ReentrantLock中tryLock与lock的区别(非公平锁与公平锁)
设置同步状态,利用CAS操作. // CAS操作:如果当前状态值等于期望值,则自动将同步状态设置为给定的更新值 protected final boolean compareAndSetState(i ...
- flutter-初识(基础语法)
前言:笔者学过 java,刚刚接触 flutter,记录下基本的一些语法. 一.认识Flutter Flutter 是 google 推出的,使用的 Dart 语言,它可以跨平台实现 Android ...
- 你知道Object中有哪些方法及其作用吗?
一.引言二.Object方法详解1.1.registerNatives()1.2.getClass()1.2.1.反射三种方式:1.3.hashCode()1.4.equals()1.4.clone( ...
- Blend 硬货 绑定
原文:Blend 硬货 绑定 开始讲一点 硬技能 怎么用Blend实现绑定 效果 详细说一下绑定 1)default 2)OneTime 3) One Way 4)TwoWay 5) OneWayto ...
- java包装类和值类型的关系
java包装类总是让人疑惑 它与值类型到底是怎么样一种关系? 本文将以int和Integer为例来探讨它们的关系 java值类型有int short char boolean byte long fl ...
- Java常用类StringBuffer详解
内容多为最近学习的自我总结,可能有些地方写的不严谨,甚至会有错误的地方,仅供参考,如发现错误敬请指出,谢谢! 灰色字体为补充扩展内容,多为帮助自己理解. StringBuffer概述: 线程安全的可变 ...