spark jdbc(mysql) 读取并发度优化
转自:https://blog.csdn.net/lsshlsw/article/details/49789373
很多人在spark中使用默认提供的jdbc方法时,在数据库数据较大时经常发现任务 hang 住,其实是单线程任务过重导致,这时候需要提高读取的并发度。
下文以mysql为例进行说明。
在spark中使用jdbc
在 spark-env.sh 文件中加入:
export SPARK_CLASSPATH=/path/mysql-connector-java-5.1.34.jar
任务提交时加入:
--jars /path/mysql-connector-java-5.1.34.jar
1. 单partition(无并发)
调用函数
def jdbc(url: String, table: String, properties: Properties): DataFrame
使用:
val url = "jdbc:mysql://mysqlHost:3306/database"
val tableName = "table"
// 设置连接用户&密码
val prop = new java.util.Properties
prop.setProperty("user","username")
prop.setProperty("password","pwd")
// 取得该表数据
val jdbcDF = sqlContext.read.jdbc(url,tableName,prop)
// 一些操作
....
查看并发度
jdbcDF.rdd.partitions.size # 结果返回 1
该操作的并发度为1,你所有的数据都会在一个partition中进行操作,意味着无论你给的资源有多少,只有一个task会执行任务,执行效率可想而之,并且在稍微大点的表中进行操作分分钟就会OOM。
更直观的说法是,达到千万级别的表就不要使用该操作,count操作就要等一万年,no zuo no die ,don’t to try !
WARN TaskSetManager: Lost task 0.0 in stage 6.0 (TID 56, spark047219):
java.lang.OutOfMemoryError: GC overhead limit exceeded
at com.mysql.jdbc.MysqlIO.reuseAndReadPacket(MysqlIO.java:3380)
2. 根据Long类型字段分区
调用函数
def jdbc(
url: String,
table: String,
columnName: String, # 根据该字段分区,需要为整形,比如id等
lowerBound: Long, # 分区的下界
upperBound: Long, # 分区的上界
numPartitions: Int, # 分区的个数
connectionProperties: Properties): DataFrame
使用:
val url = "jdbc:mysql://mysqlHost:3306/database"
val tableName = "table"
val columnName = "colName"
val lowerBound = 1,
val upperBound = 10000000,
val numPartitions = 10,
// 设置连接用户&密码
val prop = new java.util.Properties
prop.setProperty("user","username")
prop.setProperty("password","pwd")
// 取得该表数据
val jdbcDF = sqlContext.read.jdbc(url,tableName,columnName,lowerBound,upperBound,numPartitions,prop)
// 一些操作
....
查看并发度
jdbcDF.rdd.partitions.size # 结果返回 10
该操作将字段 colName 中1-10000000条数据分到10个partition中,使用很方便,缺点也很明显,只能使用整形数据字段作为分区关键字。
3000w数据的表 count 跨集群操作只要2s。
3. 根据任意类型字段分区
调用函数
jdbc(
url: String,
table: String,
predicates: Array[String],
connectionProperties: Properties): DataFrame
下面以使用最多的时间字段分区为例:
val url = "jdbc:mysql://mysqlHost:3306/database"
val tableName = "table"
// 设置连接用户&密码
val prop = new java.util.Properties
prop.setProperty("user","username")
prop.setProperty("password","pwd")
/**
* 将9月16-12月15三个月的数据取出,按时间分为6个partition
* 为了减少事例代码,这里的时间都是写死的
* modified_time 为时间字段
*/
val predicates =
Array(
"2015-09-16" -> "2015-09-30",
"2015-10-01" -> "2015-10-15",
"2015-10-16" -> "2015-10-31",
"2015-11-01" -> "2015-11-14",
"2015-11-15" -> "2015-11-30",
"2015-12-01" -> "2015-12-15"
).map {
case (start, end) =>
s"cast(modified_time as date) >= date '$start' " + s"AND cast(modified_time as date) <= date '$end'"
}
// 取得该表数据
val jdbcDF = sqlContext.read.jdbc(url,tableName,predicates,prop)
// 一些操作
查看并发度
jdbcDF.rdd.partitions.size # 结果返回 6
该操作的每个分区数据都由该段时间的分区组成,这种方式适合各种场景,较为推荐。
结语
以
mysql3000W 数据量表为例,单分区count,僵死若干分钟报OOM。分成5-20个分区后,
count操作只需要2s高并发度可以大幅度提高读取以及处理数据的速度,但是如果设置过高(大量的partition同时读取)也可能会将数据源数据库弄挂。
spark jdbc(mysql) 读取并发度优化的更多相关文章
- JSP + JDBC + MySQL 读取数据库内容到网页
创建数据库表 导入JDCB驱动 mysql.jsp <%@ page language="java" %> <%@ page contentType=" ...
- 如何处理PHP和MYSQL的并发以及优化
sql优化,数据缓存和页面静态化首先各种优化程序逻辑优化数据库优化硬件横向扩展数据hash.服务器提升性能.表hash.出钱找oraclec出解决方案页面静态化:Php页面静态化有两种,第一,php模 ...
- Tomcat + Mysql高并发配置优化
1.Tomcat优化配置 (1)更改Tomcat的catalina.bat 将java变成server模式,增大jvm的内存,在文件开始位置增加 setJAVA_OPTS=-server -Xms10 ...
- 使用Apache Spark 对 mysql 调优 查询速度提升10倍以上
在这篇文章中我们将讨论如何利用 Apache Spark 来提升 MySQL 的查询性能. 介绍 在我的前一篇文章Apache Spark with MySQL 中介绍了如何利用 Apache Spa ...
- Spark JDBC系列--取数的四种方式
Spark JDBC系列--取数的四种方式 一.单分区模式 二.指定Long型column字段的分区模式 三.高自由度的分区模式 四.自定义option参数模式 五.JDBC To Other Dat ...
- Spark JDBC To MySQL
mysql jdbc driver下载地址https://dev.mysql.com/downloads/connector/j/ 在spark中使用jdbc1.在 spark-env.sh 文件中加 ...
- spark练习--mysql的读取
前面我们一直操作的是,通过一个文件来读取数据,这个里面不涉及数据相关的只是,今天我们来介绍一下spark操作中存放与读取 1.首先我们先介绍的是把数据存放进入mysql中,今天介绍的这个例子是我们前两 ...
- Spark使用Java读取mysql数据和保存数据到mysql
原文引自:http://blog.csdn.net/fengzhimohan/article/details/78471952 项目应用需要利用Spark读取mysql数据进行数据分析,然后将分析结果 ...
- Spark JDBC方式连接MySQL数据库
Spark JDBC方式连接MySQL数据库 一.JDBC connection properties(属性名称和含义) 二.spark jdbc read MySQL 三.jdbc(url: Str ...
随机推荐
- win7下每次打开Excel2007都提示向程序发送命令时出现问题的解决方案
每次打开Excel2007都提示向程序发送命令时出现问题,要打开两次才可以打开,下面介绍该问题的解决办法. 第一种情况:也就是屏蔽DDE的解决方案,这是大多数人都是这种情况,该情况的解决办法: exc ...
- 【转帖】普通程序员如何转向AI方向
普通程序员如何转向AI方向 https://www.cnblogs.com/subconscious/p/6240151.html 眼下,人工智能已经成为越来越火的一个方向.普通程序员,如何转向人工智 ...
- Delphi BusinessSkinForm使用说明
1.先放bsBusinessSkinForm.bsSkinData.bsStoredSkin各一个到窗体上 2.修改bsBusinessSkinForm的SkinData属性为bsSkinData1 ...
- ZYNQ笔记(4):PL触发中断
一.ZYNQ中断框图 PL到PS部分的中断经过ICD控制器分发器后同时进入CPU1 和CPU0.从下面的表格中可以看到中断向量的具体值.PL到PS部分一共有20个中断可以使用.其中4个是快速中断.剩余 ...
- FMC与FPGA双口ram通讯
硬件环境:ARM+FPGA通过FMC互联,STM32F767和 EP4CE15F23I7 FMC设置,STM的系统时钟HCLK为216MHz /* FMC initialization functio ...
- 『正睿OI 2019SC Day1』
概率与期望 总结 老师上午几乎是在讲数学课,没有讲什么和\(OI\)有关的题目,所以我就做了一点笔记. 到了下午,老师讲完了有关知识点和经典模型,就开始讲例题了.前两道例题是以前就做过的,所以没有什么 ...
- C#调用 kernel32.dll
调用方法: private string mFileName; //INI文件名 public OneGanttINI(string pFileName) { this.mFileName = App ...
- Android:Toolbar的图标尺寸问题
之前一直使用的是Material Design的图标库,下载下来以后直接放入了对应文件夹,什么尺寸对应什么dpi都没有仔细研究过. 最近在Toolbar上添加几个不是MD图标库内的图标时发现,放入的图 ...
- ex_gcd求不定方程的最小正整数解
#include<bits/stdc++.h> using namespace std; int gcd(int a,int b) {return b?gcd(b,a%b):a;} int ...
- 关于springMVC中的路径问题
相对路径中,我们最后想要的到的是绝对路径,而绝对路径=参照路径+相对路径: 相对路径往往都知道,只需要区分参照路径即可:对于前台和后台,参照路径不太相同: 什么是前台,后台路径: 前台路径: 出现在 ...