USACO Balanced Lineup
poj 3264
http://poj.org/problem?id=3264
洛谷 P2880
https://www.luogu.org/problemnew/show/P2880
题目描述
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
一个农夫有N头牛,每头牛的高度不同,我们需要找出最高的牛和最低的牛的高度差。
输入输出格式
输入格式:
Line 1: Two space-separated integers, N and Q.
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
输出格式:
Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.
输入输出样例
6 3
1
7
3
4
2
5
1 5
4 6
2 2
6
3
0 RMQ的裸题,直接用ST算法AC就可以。
跑一遍最大值再来一遍最小值。
AC Code:
#include<cstdio>
#include<algorithm>
using namespace std;
int n,q;
int lg[];
int f[][],p[][];
int main()
{
scanf("%d%d",&n,&q);
for(int i=;i<=n;i++)
{
scanf("%d",&f[i][]);
p[i][]=f[i][];
}
for(int i=;i<=n;i++)
lg[i]=lg[i>>]+;
for(int j=;(<<j)<=n;j++)
for(int i=;i+(<<j)-<=n;i++)
{
f[i][j]=max(f[i][j-],f[i+(<<(j-))][j-]);
p[i][j]=min(p[i][j-],p[i+(<<(j-))][j-]);
}
for(int i=;i<=q;i++)
{
int x,y;
scanf("%d%d",&x,&y);
int k=lg[y-x+];
printf("%d\n",max(f[x][k],f[y-(<<k)+][k])-min(p[x][k],p[y-(<<k)+][k]));
}
return ;
}
USACO Balanced Lineup的更多相关文章
- poj 3264:Balanced Lineup(线段树,经典题)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 32820 Accepted: 15447 ...
- Balanced Lineup(树状数组 POJ3264)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 40493 Accepted: 19035 Cas ...
- poj3264 - Balanced Lineup(RMQ_ST)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 45243 Accepted: 21240 ...
- BZOJ-1699 Balanced Lineup 线段树区间最大差值
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 41548 Accepted: 19514 Cas ...
- POJ3264 Balanced Lineup
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 44720 Accepted: 20995 ...
- POJ 3274 Gold Balanced Lineup
Gold Balanced Lineup Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10924 Accepted: 3244 ...
- 哈希-Gold Balanced Lineup 分类: POJ 哈希 2015-08-07 09:04 2人阅读 评论(0) 收藏
Gold Balanced Lineup Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13215 Accepted: 3873 ...
- [POJ] 3264 Balanced Lineup [线段树]
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 34306 Accepted: 16137 ...
- [POJ] 3264 Balanced Lineup [ST算法]
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 34306 Accepted: 16137 ...
随机推荐
- 第04组 Alpha冲刺(6/6)
队名:new game 组长博客:戳 作业博客:戳 组员情况 鲍子涵(队长) 燃尽图 过去两天完成了哪些任务 协调了一下组内的工作 复习了一下SuffixAutomata 接下来的计划 实现更多的功能 ...
- [分布式学习]消息队列之rocketmq笔记
文档地址 RocketMQ架构 哔哩哔哩上的视频 mq有很多,近期买了<分布式消息中间件实践>这本书,学习关于mq的相关知识.mq大致有有4个功能: 异步处理.比如业务端需要给用户发送邮件 ...
- AngleSharp 实战(05)之遍历内部子元素(x)元素,尝试着获取元素的 Attr 和 InnerText
直接贴代码了: using System; using System.Linq; using System.Threading.Tasks; using AngleSharp; using Angle ...
- 聊聊springboot2的embeded container的配置改动
本文主要研究下springboot2的embeded container的配置改动 springboot 1.x import org.apache.catalina.connector.Connec ...
- python基础之Matplotlib库的使用一(平面图)
在我们过去的几篇博客中,说到了Numpy的使用,我们可以生成一些数据了,下面我们来看看怎么让这些数据呈现在图画上,让我们更加直观的来分析数据. 安装过程我就不再说了,不会安装的,回去补补python最 ...
- C# iText split PDF C# 拆分PDF
Nuget install iText7 using iText.Kernel.Pdf; using System.Linq; using System.Text; using System.Thre ...
- 对try catch finally的理解
对try catch finally的理解1.finally 总是会运行的,即使在catch中thorw抛出异常了. 2.finally 在 return后没有结束,而是继续运行finally 2. ...
- Winform 美化
首先,我们先来实现主界面的扁平化 此处分为两个步骤,第一步是更改winform自带的MainForm窗体属性,第二步是添加窗体事件. 将主窗体FormBorderStyle更改为None,这样就得到了 ...
- 《深入理解Java虚拟机》并发(第12~13章)笔记
volatile关键字的作用 所有变量的可见性--仅仅是修改后的值的可见性,不保证并发修改时新值和预期一致.即只保证读,不保证写. 禁止指令重排序--修饰的变量,读写不会指令重排.如变量isReady ...
- Java网上体育商城系统ssh
网上体育商城的主要功能包括:前台用户登录退出.注册.在线购物.修改个人信息.后台商品管理等等.本系统结构如下:(1)商品浏览模块: 首页浏览最新上市商品,按销量排行显示商品 ...