题目链接:https://vjudge.net/problem/POJ-1228

题意:我是真的没看懂题意QAQ。。。搜了才知道。题目给了n个点,问这n个点确定的凸包是否能通过添加点来变成一个新的凸包。也就是这个凸包是否稳定,稳定输出YES,否则输出NO。

思路:
  首先给出结论,一个凸包稳定当且仅当它的每一条边上都有>=3个点。因为如果只有两个点的话,那么在这条边之外取一个点就能扩展出一个更大的凸包。而每条边上都有>=3个点时,此时扩展时会使得凸包变凹!

  所以我们需要改一下求凸包的模板,只用将while中的<=改成< 即可,但这不能将最后一条边上的多个点保留 ,因为排序时将距离近的点排在前面 ,那么最后一条边上的点仅有距离最远的会被保留,其余的会被出栈。所以最后一条边需要特判。(网上许多代码没有特判,仅仅只是在判断的时候忽略了最后一条边,然而数据弱,没有卡这个点,所以能AC)。

  求凸包之后需要判断每条边是不是由>=3个点。可以利用叉积判断点i处和点(i+1)处的夹角是否都不为0来判断,如果都不为0那么边(i , i+1)就不满足条件,因为前面特判了最后一条边(top , 0),所以这里枚举判断时就不用枚举最后一条边了。

AC code:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std; const int maxn=;
const double PI=acos(-1.0); struct Point{
int x,y;
Point():x(),y(){}
Point(int x,int y):x(x),y(y){}
}list[maxn];
int stack[maxn],top,flag; //计算叉积p0p1×p0p2
int cross(Point p0,Point p1,Point p2){
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
//计算p1p2的距离
double dis(Point p1,Point p2){
return sqrt((double)(p2.x-p1.x)*(p2.x-p1.x)+(p2.y-p1.y)*(p2.y-p1.y));
}
//极角排序函数,角度相同则距离小的在前面
bool cmp(Point p1,Point p2){
int tmp=cross(list[],p1,p2);
if(tmp>) return true;
else if(tmp==&&dis(list[],p1)<dis(list[],p2)) return true;
else return false;
}
//输入,把最左下角放在list[0],并且进行极角排序
void init(int n){
Point p0;
scanf("%d%d",&list[].x,&list[].y);
p0.x=list[].x;
p0.y=list[].y;
int k=;
for(int i=;i<n;++i){
scanf("%d%d",&list[i].x,&list[i].y);
if((p0.y>list[i].y)||((p0.y==list[i].y)&&(p0.x>list[i].x))){
p0.x=list[i].x;
p0.y=list[i].y;
k=i;
}
}
list[k]=list[];
list[]=p0;
sort(list+,list+n,cmp);
}
//graham扫描法求凸包,凸包顶点存在stack栈中
//从栈底到栈顶一次是逆时针方向排列的
void graham(int n){
if(n==){
top=;
stack[]=;
return;
}
top=;
stack[]=;
stack[]=;
for(int i=;i<n;++i){
while(top>&&cross(list[stack[top-]],list[stack[top]],list[i])<) --top;
stack[++top]=i;
}
if(cross(list[n-],list[n-],list[])!=) //特判最后一条边
flag=;
} bool check(){
for(int i=;i<top;++i){
if(cross(list[stack[(i+top)%(top+)]],list[stack[i]],list[stack[(i+)%(top+)]])!=&&
cross(list[stack[i]],list[stack[(i+)%(top+)]],list[stack[(i+)%(top+)]])!=)
return false;
}
return true;
} int T,n; int main(){
scanf("%d",&T);
while(T--){
flag=;
scanf("%d",&n);
init(n);
if(n<){
printf("NO\n");
continue;
}
graham(n);
if(!flag){
printf("NO\n");
continue;
}
if(check()) printf("YES\n");
else printf("NO\n");
}
return ;
}

poj1228(稳定凸包+特判最后一条边)的更多相关文章

  1. poj1228稳定凸包

    就是给一系列点,看这是不是一个稳定凸包 稳定凸包是指一个凸包不能通过加点来使它扩大面积,也就是说每条边最少有三个点 判断的地方写错了,写了两边循环,其实数组s已经排好了序,直接每三个判断就好了 #in ...

  2. POJ1228(稳定凸包问题)

    题目:Grandpa's Estate   题意:输入一个凸包上的点(没有凸包内部的点,要么是凸包顶点,要么是凸包边上的点),判断这个凸包是否稳定.所谓稳 定就是判断能不能在原有凸包上加点,得到一个更 ...

  3. POJ1228 Grandpa's Estate 稳定凸包

    POJ1228 转自http://www.cnblogs.com/xdruid/archive/2012/06/20/2555536.html   这道题算是很好的一道凸包的题吧,做完后会加深对凸包的 ...

  4. POJ 1228 - Grandpa's Estate 稳定凸包

    稳定凸包问题 要求每条边上至少有三个点,且对凸包上点数为1,2时要特判 巨坑无比,调了很长时间= = //POJ 1228 //稳定凸包问题,等价于每条边上至少有三个点,但对m = 1(点)和m = ...

  5. Grandpa's Estate - POJ 1228(稳定凸包)

    刚开始看这个题目不知道是什么东东,后面看了大神的题解才知道是稳定凸包问题,什么是稳定凸包呢?所谓稳定就是判断能不能在原有凸包上加点,得到一个更大的凸包,并且这个凸包包含原有凸包上的所有点.知道了这个东 ...

  6. poj 1228 稳定凸包

    Grandpa's Estate Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12337   Accepted: 3451 ...

  7. POJ 1228 (稳定凸包问题)

    <题目链接> <转载于  >>> > 首先来了解什么是稳定的凸包.比如有4个点: 这四个点是某个凸包上的部分点,他们连起来后确实还是一个凸包.但是原始的凸包可 ...

  8. 凸包稳定性判断:每条边上是否至少有三点 POJ 1228

    //凸包稳定性判断:每条边上是否至少有三点 // POJ 1228 #include <iostream> #include <cstdio> #include <cst ...

  9. Gym 101128J Saint John Festival(凸包 + 二分判点和凸包关系)题解

    题意:给你一堆黑点一堆红点,问你有最多几个黑点能找到三个红点,使这个黑点在三角形内? 思路:显然红点组成的凸包内的所有黑点都能做到.但是判断黑点和凸包的关系朴素方法使O(n^2),显然超时.那么我现在 ...

随机推荐

  1. 《挑战30天C++入门极限》C++运算符重载赋值运算符

        C++运算符重载赋值运算符 自定义类的赋值运算符重载函数的作用与内置赋值运算符的作用类似,但是要要注意的是,它与拷贝构造函数与析构函数一样,要注意深拷贝浅拷贝的问题,在没有深拷贝浅拷贝的情况下 ...

  2. 本地Windows远程桌面连接阿里云Ubuntu服务器

    本地Windows远程桌面连接阿里云Ubuntu 16.04服务器: 1.目的:希望通过本地的Windows远程桌面连接到阿里云的Ubuntu服务器,通过远程桌面图形界面的方式操作服务器. 2.条件: ...

  3. IDEA中常用快捷键

    Alt+Enter 牛掰的万能快捷键,实现接口和抽象类.导入包.异常捕获.转换lambda表达式.equals的翻转和更换访问修饰符等,无所不能.   Ctrl+D 复制当前行 Ctrl+Y 删除行 ...

  4. Hadoop hadoop 之hdfs数据块修复方法

    hadoop 之hdfs数据块修复方法: .手动修复 hdfs fsck / #检查集群的健康状态 hdfs debug recoverLease -path 文件位置 -retries 重试次数 # ...

  5. Redis哨兵日志说明

    一.说明

  6. FIS3

    #npm install -g cnpm --registry=https://registry.npm.taobao.org#cnpm install -g fis3 npm install fis ...

  7. centos下php扩展安装imagemagick

    centos下php扩展安装imagemagick 2015-10-23TONY7PHP 对于php的imagick主要是两部分的安装 ImageMagick主程序地址http://www.image ...

  8. 前端 img标签显示 base64格式的 图片

    本文链接:https://blog.csdn.net/kukudehui/article/details/80409522在做项目的时候,我从后端返回了一个base64格式的图片文件,想把它渲染在前端 ...

  9. 解决:WdatePicker新增状态下只能取比当前月份大的月份,编辑状态下只能取比当前input里指定月份的月份大的值

    onclick="WdatePicker({ dateFmt: 'yyyy-MM', autoPickDate: true, minDate: this.value==''?'%y-#{%M ...

  10. 《浅谈F5健康检查常用的几种方式》—那些你应该知道的知识(二)

    版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/sinat_17736151/articl ...