【题解】Kathy函数 [BZOJ1223] [P2235] [HNOI2002]


这几疯狂刷了数位\(dp\)的题,到这道题时被卡了一天,一看大佬的讲解发现居然是求回文数╮(╯_╰)╭

感觉被大佬狠狠地蹂蹑了一番。。。

废话到此结束,进入正题:

满足\(f(n)=n\)的\(n\)在二进制的形式下一定是一个回文数

例如:

\(f(1)=1\) (\(1\))

\(f(3)=3\) (\(11\))

\(f(5)=5\) (\(101\))

\(f(7)=7\) (\(111\))

至于为什么会有这个性质,这里就作证明(都懒得给自己的懒惰找借口了)

假设已经成功的证明了这个结论,那么问题就变成了在\([1,n]\)中找到符合二进制形式为回文数的总个数,这里我提供一种用\(dfs\)实现数位\(dp\)的思路

可以先写一下这道题(因为不需要高精):

只需要输出区间内回文数的总个数

LightOJ1205


用\(dfs\)找回文数个数:

一:转进制

首先我们需要把\(n\)转化为二进制存储在一个数组\(num[lenn]\)中

二:DFS

\(dfs(st,pos,ok,limit)\)

记搜以及状态表示

用一个数组记录已经搜过的地方,\(dp[pos][ok][st]\) 示已经选到了第\(pos\)位,前已经选好的是否满足回文\(ok\),去前导\(0\)后共有\(st\)位,并且前面已选的并未全部达到上限(\(pos\)开始后面可以随意选\(0\)或\(1\)),此时的回文数总数。

\(limit\)表示前面已选的是否全达到上限,如果是,那么这一位的可以选的数的上限为\(num[pos]\),否则可以随意选,\(ed=limit?num[pos]:1\)。

如果当前状态并未受限,且当前状态的\(dp\)值已经被记录,直接返回这个值

如何枚举递归

每当选了一个数\(i\)时, \(tmp[pos]=i\)。

(1) 如果前面都没选(即全是前\(0\),\(st=pos\)),

\(ans+=dfs\)(\(st-1\),\(pos-1\),\(ok\),\(limit\)&&\(i==ed\))

(2) 如果前面选了(即\(st>pos\))

  1. 如果当前状态是回文数,且当前选的这位在\(st\)的后半段(即\(ok\)&&\(pos<=st/2\)),则\(okk=tmp[st-pos+1]==i\)
  2. 否则 \(okk=ok\)。

    \(ans+=dfs\)(\(st\),\(pos-1\),\(okk\),\(limit\)&&\(i==ed\))

\(dfs\)边界

当\(pos==0\)(即已经选完了所有位)

如果满足回文数(即\(ok=1\))且选了数(即并非全是\(0\),\(st>0\))\(return 1\)。

三.高精

推荐写结构体,用起来方便,不会的可以参考一下大佬的高精模板

最后附上代码:

#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int base = 1e8;
const int N = 20;
int aux[N << 3];
struct bigint {
int s[N], l;
void CL() { l = 0; memset(s, 0, sizeof(s)); }
void pr()
{
printf("%d", s[l]);
for (int i = l - 1; i; i--)
printf("%08d", s[i]);
}
void re_l()
{
int i, x = 0, k = 1, L = 0, fl, o;
char c = getchar();
for (; c < '0' || c > '9'; c = getchar());
for (; c >= '0' && c <= '9'; c = getchar())
{
if (!(L - 1) && !aux[L])
L--;
aux[++L] = c - '0';
}
CL();
l = L / 8 + ((o = L % 8) > 0);
for (i = 1; i <= o; i++)
x = x * 10 + aux[i];
if (o)
s[l] = x;
fl = !o ? l + 1 : l;
for (i = o + 1, x = 0; i <= L; i++, k++)
{
x = x * 10 + aux[i];
if (!(k ^ 8))
{
s[--fl] = x;
x = k = 0;
}
}
if (!l)
l = 1;
}
ll toint()
{
ll x = 0;
for (int i = l; i; i--)
x = x * base + s[i];
return x;
}
bigint operator = (int b)
{
CL();
do
{
s[++l] = b % base;
b /= base;
} while (b > 0);
return *this;
}
bigint operator = (ll b)
{
CL();
do
{
s[++l] = b % base;
b /= base;
} while (b > 0);
return *this;
}
bigint operator + (const int &b)
{
bigint c = *this;
ll x = b;
for (int i = 1; i <= l && x; i++)
{
x = x + c.s[i];
c.s[i] = x % base;
x /= base;
}
if(x)c.s[++c.l] = x;
return c;
}
bigint operator + (const ll &b)
{
bigint c = *this;
ll x = b;
for (int i = 1; i <= l && x; i++)
{
x = x + c.s[i];
c.s[i] = x % base;
x /= base;
}
if (x)
c.s[++c.l] = x;
return c;
}
bigint operator + (bigint &b)
{
if (b.l < 3)
return *this + b.toint();
bigint c;
ll x = 0;
int k = l < b.l ? b.l : l;
c.CL();
c.l = k;
for (int i = 1; i <= k; i++)
{
x = x + s[i] + b.s[i];
c.s[i] = x % base;
x /= base;
}
if (x)
c.s[++c.l] = x;
return c;
}
bigint operator / (const int &b)
{
bigint c;
ll x = 0;
c.CL();
for (int i = l; i; i--)
{
c.s[i] = (x * base + s[i]) / b;
x = (x * base + s[i]) % b;
}
for (c.l = l; !c.s[c.l] && c.l > 1; c.l--);
return c;
}
bigint operator % (const int &b)
{
bigint c;
ll x = 0;
c.CL();
for (int i = l; i; i--)
x = (x * base + s[i]) % b;
return c = x;
}
bool operator > (const bigint &b) const
{
if (l ^ b.l)
return l > b.l;
for (int i = l; i; i--)
if (s[i] ^ b.s[i])
return s[i] > b.s[i];
return false;
}
bigint operator += (bigint &b)
{
return *this = *this + b;
}
bool operator > (int b) const{
bigint c;return *this > (c = b);
}
};
//以上皆为高精度部分 bigint a;
int num[350],tmp[350];bigint dp[350][2][350];
bool pan[350][2][350];
inline bigint dfs(int st,int len,int ok,bool limit){
bigint ans,pp;ans=0;pp=0;
if(len<1){//边界
if(ok&&st>0)ans=1;
return ans;
}
if(!limit&&pan[len][ok][st])return dp[len][ok][st];//返回所记录的值
int ed=limit?num[len]:1;//处理枚举上限
for(int i=0;i<=ed;i++){
tmp[len]=i;//记录每次选的数,方便判断是否满足回文
if(st==len&&!i)pp=dfs(st-1,len-1,ok,limit&&i==ed),ans+=pp;//如果一直都没选数
else pp=dfs(st,len-1,(ok&&len<=st/2)?tmp[st-len+1]==i:ok,limit&&i==ed),ans+=pp;//如果选了数
}
if(!limit)dp[len][ok][st]=ans,pan[len][ok][st]=1;//记录
return ans;
}
int main(){
a.re_l();ll Lenn=0;
while(a>0){num[++Lenn]=(a%2).toint();a=(a/2);}//转成2进制存起来
bigint ans=dfs(Lenn,Lenn,1,1);
ans.pr();
return 0;
}

【题解】Kathy函数 [BZOJ1223] [P2235] [HNOI2002]的更多相关文章

  1. bzoj 1223: [HNOI2002]Kathy函数 数位DP 高精度

    1223: [HNOI2002]Kathy函数 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 207  Solved: 90[Submit][Stat ...

  2. [bzoj1223] [HNOI2002]Kathy函数

    首先由题解可得TAT,f(i)=i当且仅当i在二进制下为回文串. 那么问题就变成了1~n中有多少个二进制下的回文串. 把m转成2进制后就是正常的统计了= =. f[i]表示二进制下,有多少个i位的回文 ...

  3. 洛谷P2235 [HNOI2002]Kathy函数

    传送门 题解 // luogu-judger-enable-o2 //minamoto #include<cstdio> #include<cstring> using nam ...

  4. [HNOI2002] Kathy 函数

    数位 DP 套路题,求二进制下区间内回文串个数. 设 dp[][][] 表示到第几位时,是否为回文数,去掉前导零后共几位.之后到边界时判断是否为回文数计入贡献. 一开始不知道答案统计要高精,于是后来就 ...

  5. 洛谷$P$2235 $Kathy$函数 $[HNOI2002]$ 数位$dp$

    正解:数位$dp$ 解题报告: 传送门$qwq$ $HNOI$的题从02年就这么神了嘛$QAQ$,,, 嗷对了这题如果看出了一个结论就是个数位$dp$板子,,,?但是结论很神我$jio$得挺难看出来的 ...

  6. 【CJOJ2484】【Luogu2805】最小函数值(函数最小值)

    题面 Description 有n个函数,分别为F1,F2,...,Fn.定义 Fi(x)=Aix2+Bix+Ci(x∈N∗)Fi(x)=Aix2+Bix+Ci(x∈N∗) .给定这些Ai.Bi和Ci ...

  7. 「题解」300iq Contest 2 H. Honorable Mention

    本文将同步发布于: 洛谷博客: csdn: 博客园: 简书. 题目 题目链接:gym102331H. 题意概述 给定一个长度为 \(n\) 的序列 \(a\),有 \(q\) 次询问,每次询问给定三个 ...

  8. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  9. 数位DP学习笔记

    数位DP学习笔记 什么是数位DP? 数位DP比较经典的题目是在数字Li和Ri之间求有多少个满足X性质的数,显然对于所有的题目都可以这样得到一些暴力的分数 我们称之为朴素算法: for(int i=l_ ...

随机推荐

  1. flink Iterate迭代基本概念

    基本概念:在流中创建“反馈(feedback)”循环,通过将一个算子的输出重定向到某个先前的算子.这对于定义不断更新模型的算法特别有用. 迭代的数据流向:DataStream → IterativeS ...

  2. jmeter+jenkins配置过程

    目录 前置条件 脚本规划 讲解非GUI方式运行脚本 在jenkins里面新建项目 在Jmeter的jtl结果文件转换成html页面 邮件.配置 前置条件 1.jmeter安装好并已配置好环境变量,可正 ...

  3. MySQL Other--mysql_config_editor学习使用

    mysql_config_editor工具 为避免MySQL明文密码出现在脚本或命令中,从MySQL5.6开始提供了mysql_config_editor工具,可以将数据库连接信息进行加密并保存到用户 ...

  4. Django框架(七)-- 模板层:模板导入、模板继承、静态文件

    一.模板导入 要复用一个组件,可以将该组件写在一个文件中,在使用的时候导入即可 在模板中使用 1.语法 {% include '模板名字' %} 2.使用 ad.html页面 <div clas ...

  5. spring项目使用mave将第三方jar包打进war包中

    背景:一个标准的ssm项目,需要使用到第三方jar,现需要将项目发布到liunx的服务器上,将项目打成war包,第三方war包也需要打进去 首先是直接打包,发现第三方jar包并没有打进去......蛋 ...

  6. 手写xpath定位公式

    做web自动化,之前我们已经将环境搭建好了,现在的话总结下怎么定位元素的 最基本的元素定位是有6种: driver.find_element_by_id("") driver.fi ...

  7. 【转】Pandas学习笔记(三)修改&添加值

    Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...

  8. mybatis框架的分页功能

    需求说明:为用户管理之查询用户列表功能增加分页实现      列表结果按照创建时间降序排列 /** * 需求说明:为用户管理之查询用户列表功能增加分页实现 列表结果按照创建时间降序排列 * @para ...

  9. 【oracle】decode函数

    DECODE(参数,值1,翻译值1,值2,翻译值2,...值n,翻译值n,缺省值) 值1:当参数=值1    翻译值1:想要得到的值 值2:当参数=值2 翻译值2:想要得到的值

  10. 在执行一行代码之前CLR做的68件事

    因为CLR是一个托管环境,所以运行时中有几个组件需要在执行任何代码之前初始化.本文将介绍EE(执行引擎)启动程序,并详细检查初始化过程.68只是一个粗略的指南,它取决于您使用的运行时版本.启用了哪些功 ...