ZROI 暑期高端峰会 A班 Day1 序列数据结构
FBI Warning:本文包含大量人类的本质之一
CF643G
维护一个序列,可以区间赋值,求区间中出现超过 \(p\%\) 的数。
允许输出不对的数,允许重复输出,但是所有对的数都一定要输出。而且个数不能超过 \(\lfloor\frac{100}{p}\rfloor\)。
\(n\le 1.5\times 10^5,p\ge 20\)。
假设就求超过 \(20\%\) 的数。
假如区间长度是 \(k\),那么找出区间第 \(\frac{i}{6}k(1\le i\le 5)\) 大。直接输出即可。
证明?想象把所有数排序后,称第 \(\frac{i}{6}k\) 的位置是关键位置。那么如果一个数至少出现了 \(20\%\),就会出现在至少一个关键位置。
所以输出所有关键位置的数就不会遗漏了。
然而有区间赋值操作……挂了……
考虑另一种做法。怎么线性求呢?
如果是要求至少 \(50\%\) 的,每次两个数打架,擂主被打倒了就换擂主。
\(20\%\) 同理。维护 \(5\) 个擂主,每次一个新数和每个擂主都打架。注意的是如果新数和擂主一样,生命值 \(+=4\)。
放到线段树上,每个节点维护 \(5\) 个擂主,pushup 时更新一下即可。
HDU6087
给两个序列 \(a,b\),初始 \(a,b\) 一样,支持区间求和,
for(int i=l;i<=r;i++) a[i]=a[i-k]
for(int i=l;i<=r;i++) a[i]=b[i]
这三种操作。
\(n,q\le 10^5\),内存限制 64M
明显是区间复制操作。
注意的是复制 \(m\) 次区间不能暴力做,可以类似快速幂的方式。
对于返回操作,复制个节点即可。
时间复杂度 \(O(q\log^2n)\)。
可以过一段时间就重构整棵树,同时垃圾回收,空间就不会炸了。
CF453E
长度为 \(n\) 的序列 \(s\),每过一个时刻 \(s_i+=v_i,s_i=\min(s_i,m_i)\)。
\(q\) 次操作,每次询问区间 \(s\) 的和,同时把 \(s\) 都置为 \(0\)。
\(n,q\le 10^5\)
先考虑每次操作都是全局的情况。(中间会有时刻没有操作,别想了!)
按 \(\lceil\frac{(m_i-s_i)}{v_i}\rceil\) 排序,也就是能量回复满的时间。每次询问二分一下即可。
对于任意区间呢?
发现序列会被分成若干段,每一段内的最后一次清零时间一样。每次操作就是多一个段,删掉完全被覆盖的段,边界段断开。段数的总个数是线性的。
回答询问时,因为段数线性,可以大暴力枚举覆盖的每一段,对每一段分别求。除了初始的一整段稍微注意一下,剩下的其实就是询问区间小于某个数的 \(\lceil\frac{m_i}{v_i}\rceil\) 的 \(v_i\) 的和,和大于某个数的 \(\lceil\frac{m_i}{v_i}\rceil\) 的 \(m_i\) 的和。主席树维护即可。
CF1172F
Ouuan 场 Div1 F 题。
题面太长,不写了。
没听懂,不写了。还是看 ouuan 的题解去。(所以就是咕了)
CF1178G
掉分好场 G 题。
给两个序列 \(a,b\),\(b\) 中都是非负整数。
两种操作:区间给 \(a\) 加一个正数,求区间 \(|a|\times b\) 最大值。
\(n,q\le 2\times 10^5\)。
\(a\) 会慢慢变大,总有一个时刻会从负变正。
把序列分块,对于零散块暴力,对于整块,(咕了,以后再说)
HDU 6337
以前讲过。好像是变成括号序列然后怎么搞的。
咕了。
ICPC2018 Beijing E
维护一个数组 \(a[0\dots 2^k-1]\):
- 对于 \(l\le i\le r\) 令 \(a_i'=a_{i\oplus x}\)
- 对于 \(l\le i\le r\) 令 \(a_{i\oplus x}'=a_i\)
- 对于 \(l\le i\le r\) 令 \(a_i'=a_i\oplus x\)
- 对于 \(l\le i\le r\) 求所有二进制中 1 的个数是奇数个的数的下标的异或和
假装 \(k\le 18\) 吧。
发现此时建线段树跟 01 Trie 很像。
对于区间 \([l,r]\) 会拆成一些区间。
对于操作 \(1\) 就相当于每个区间的子树变成了别的一棵长得一样的子树。可以可持久化 01 Trie。
对于操作 \(2\) 差不多。
对于操作 \(3\) 打个标记。
对于操作 \(4\) 记录一下子树奇数偶数的异或和就好了。
CF297E
这个图太**了,不写题面了。
对于两条线段,如果相交了连蓝边,否则连红边。那么要求的就是同色三角形个数。
可以变成求异色三角形个数。最后用总个数减。
可以变成求异色角个数。因为一个异色三角形会有两个异色角。
枚举顶点,分别计算一下蓝边数和红边数,乘起来就好了。
二维数点问题,可以瞎搞。
CF997E
原来不用析合树……
如果固定了一个区间,且 \(x,x+1\) 都在 \([l,r]\) 中,给 \(x,x+1\) 连一条边。点数-边数就是 \([l,r]\) 中的连续段个数。
(欸?不对吧???)
(于是开始思考……)
(于是掉线了)
咕了。
CF1034D
\(n\) 个区间 \([l_i,r_i]\),定义 \(f(l,r)\) 表示第 \(l\) 个区间到第 \(r\) 个区间的并的长度。求前 \(k\) 大的 \(f\) 的和。
\(n\le 3\times 10^5,k\le 10^9\)。
二分第 \(k\) 大的 \(f\) 的值,
(草又掉线了)
咕了。
CF896E
在做分块题前记得看看谁是出题人!
对每个块,每种权值维护链表。
修改时,如果 \(2x\ge len\)(\(len\) 是权值范围,一开始看成 \(10^5\)),暴力做。如果 \(2x\le len\),变成把 \(<x\) 的都 \(+x\),再打个 \(-x\) 的标记。然后更新块内权值范围。由于用链表,可以 \(O(1)\) 合并。
询问时,调用链表的长度即可。
时间复杂度:可以在 \(O(x)\) 时间内把一个块的权值范围减小 \(x\),所以如果把权值范围和 \(q\) 都看作和 \(n\) 同阶,复杂度是 \(O(n\sqrt{n})\)。
牛客4F
太长了,自己看去……
(就没上过线)
咕了。
CF1148H
升分好场 H 题。(草给我们 3600 难度的题几个意思……)
对一个初始时空的序列,支持 push_back,和询问多少个区间满足 \(\mathrm{mex}\) 为一个给定的数,强制在线。
看着难度就知道不可做。
咕了。
ZROI 暑期高端峰会 A班 Day1 序列数据结构的更多相关文章
- ZROI 暑期高端峰会 A班 Day1 组合计数
AGC036F Square Constriants 一定有 \(l_i<p_i\le r_i\). 考虑朴素容斥,枚举每个数是 \(\le l_i\) 还是 \(\le r_i\).对于 \( ...
- ZROI 暑期高端峰会 A班 Day4 树上数据结构
FBI Warning:本文含有大量人类的本质之一. 你经历过绝望吗? [ZJOI2007]捉迷藏 询问树上最远黑点对. 动态边分治可以比点分治少一个 \(\log\). bzoj3730 咕了. [ ...
- ZROI 暑期高端峰会 A班 Day2 线性代数
高斯消元 很普及组,不讲了 当主元没有逆的时候可以辗转相除. 如果也没有带余数除法--没救了 逆矩阵 我们定义矩阵 \(A\) 的逆矩阵为 \(A^{-1}\),满足 \(AA^{-1}=A^{-1} ...
- ZROI 暑期高端峰会 A班 Day3 图论
最短路 NOI2019 D2T1 弹跳 KD 树 线段树套set -> 线段树套并查集? POI2014/2015 ??? \(n\) 个点 \(m\) 条边 DAG.求删掉每个点后 \(1\) ...
- ZROI 暑期高端峰会 A班 Day4 生成函数
一般生成函数 很普及组,不讲了 生成函数是一种形式幂级数,也就是我们只关心系数,不关心未知数具体的值. 比如 \(\sum\limits_{i\ge 0}x^i=\frac{1}{1-x}\).虽然只 ...
- ZROI 暑期高端峰会 A班 Day3 字符串
FBI Warning:本文含有大量人类的本质之一 后缀树 反正后缀树就是反串的后缀自动机的 Parent 树,就不管了. 然而 SAM 也忘了 好的假装自己会吧--dls 后缀自动机 大概记得,不管 ...
- ZROI 暑期高端峰会 A班 Day5 杂题选讲
CF469E \(n\) 个需要表示的数,请使用最少的 \(2^k\) 或 \(-2^k\) 表示出所有需要表示的数.输出方案. \(n\le 10^5,|a_i|\le 10^5\). 首先每个数肯 ...
- ZROI 暑期高端峰会 A班 Day5 计算几何
内积(点积) 很普及组,不讲了. \[(a,b)^2\le(a,a)(b,b)\] 外积(叉积) 也很普及组,不讲了. 旋转 对于矩阵 \(\begin{bmatrix}\cos\theta\\\si ...
- ZROI 暑期高端峰会 A班 Day6 离线问题
FBI Warning:本文含有大量人类本质之一. 动态联通问题 允许离线. 模板,不讲了. 归并排序 %@)(#&%)++%($@)%!#(&%)(&@))) 主定理 U^( ...
随机推荐
- CAS5单点登录
看这篇文章即可:https://www.jianshu.com/p/c1273d81c4e4>https://www.jianshu.com/p/c1273d81c4e4
- ImageView的adjustViewBounds属性
adjustViewBounds属性的定义如下: 调整ImageView的边界,使得ImageView和图片有一样的宽高比 这个属性只有在ImageView一边如宽度或高度固定,一边为wrap_con ...
- 【02】Jenkins:第一个项目
写在前面的话 通过上一节我们成功的搭建起来 Jenkins,那么接下来就是体验如何构建我们的第一个项目了.当然在这之前我们得专门针对 Java 环境就行简单的配置. 全局工具配置 其实这次配置的主要还 ...
- WPF 精修篇 调用Win32Api
原文:WPF 精修篇 调用Win32Api 栗子是 调用WIn32API 让窗口最前 后台代码 [DllImport("user32.dll")] private static e ...
- EF core的原生SQL查询以及用EF core进行分页查询遇到的问题
在用.net core进行数据库访问,需要处理一些比较复杂的查询,就不得不用原生的SQL查询了,然而EF Core 和EF6 的原生sql查询存在很大的差异. 在EF6中我们用SqlQuery和Exe ...
- 架构师小跟班:推荐46个非常经典的Linux面试题
大家都知道,做后端开发,做着做着就变成全栈了.一般服务器维护应该是运维的事情,但很多很多公司都是后端工程师在做.所以,基本的Linux系统维护也是后端工程师的必修课.问题一: 绝对路径用什么符号表示? ...
- js生成一定范围内的随机整数
Math.floor(Math.random()*(m-n+1)+n) Math.floor(Math.random() * (50 - 1 + 1) + 1): 生成1-50内的随机整数
- 使用Dictionary键值对判断字符串中字符出现次数
介绍Dictionary 使用前需引入命名空间 using System.Collections.Generic Dictionary里面每一个元素都是一个键值对(由两个元素组成:键和值) 键必须是唯 ...
- JavaWeb 发送邮件
我们可以使用第三方的邮箱服务器来发送邮件. 常用的邮件传输协议有2种:POP3/SMTP.IMAP/SMTP. POP和IMAP的区别:在邮箱客户端的操作,比如移动邮件.标记已读,如果使用POP,是不 ...
- 使用Fiddler监听java HttpURLConnection请求
使用Fiddler监听java HttpURLConnection请求