1、globalmem虚拟设备实例

globalmem为“全局内存”的意思,在globalmem字符设备中会分配一片大小为GLOBALMEM_SIZE(4KB)的内存空间,并在驱动中提供对这片内存的读写、控制和定位函数,供用户空间的进程能通过Linux系统调用获取和设置这片内存。

(1)头文件、宏以及设备结构体

#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/slab.h>
#include <linux/uaccess.h> #define GLOBALMEM_SIZE 0x1000
#define MEM_CLEAR 0x1
#define GLOBALMEM_MAJOR 230 static int globalmem_major = GLOBALMEM_MAJOR;
module_param(globalmem_major, int, S_IRUGO); struct globalmem_dev {
struct cdev cdev;
unsigned char mem[GLOBALMEM_SIZE];
}; struct globalmem_dev *globalmem_devp;

定义的globalmem_dev结构体中,包含了对应于globalmem字符设备的cdev,使用的内存mem[GLOBALMEM_SIZE]。

(2)globalmem设备驱动模块的加载和卸载函数

static void globalmem_setup_cdev(struct globalmem_dev *dev, int index)
{
int err, devno = MKDEV(globalmem_major, index); cdev_init(&dev->cdev, &globalmem_fops);
dev->cdev.owner = THIS_MODULE;
err = cdev_add(&dev->cdev, devno, );
if (err) {
printk(KERN_NOTICE "Error %d adding globalmem %d", err, index);
}
} static int __init globalmem_init(void)
{
int ret;
dev_t devno = MKDEV(globalmem_major, ); if (globalmem_major) {
ret = register_chrdev_region(devno, , "globalmem");
} else {
ret = alloc_chrdev_region(&devno, , , "globalmem");
globalmem_major = MAJOR(devno);
}
if (ret < )
return ret; globalmem_devp = kzalloc(sizeof(struct globalmem_dev), GFP_KERNEL);
if (!globalmem_devp) {
ret = -ENOMEM;
goto fail_malloc;
} globalmem_setup_cdev(globalmem_devp, );
return ; fail_malloc:
unregister_chrdev_region(devno, );
return ret;
} static void __exit globalmem_exit(void)
{
cdev_del(&globalmem_devp->cdev);
kfree(globalmem_devp);
unregister_chrdev_region(MKDEV(globalmem_major, ), );
}

globalmem_setup_cdev()函数完成cdev的初始化化和添加,kzalloc()申请了一份globalmem_dev结构体的内存,并将其清0,在cdev_init()函数中,与globalmem的cdev关联的file_operations结构体如下所示:

static const struct file_operations globalmem_fops = {
.owner = THIS_MODULE,
.open = globalmem_open,
.release = globalmem_release,
.read = globalmem_read,
.write = globalmem_write,
.llseek = globalmem_llseek,
.unlocked_ioctl = globalmem_ioctl,
};

(3)读写函数的实现

首先是读函数,函数的实现如下所示:

static ssize_t globalmem_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = ;
struct globalmem_dev *dev = filp->private_data; if (p > GLOBALMEM_SIZE)
return ;
if (count > GLOBALMEM_SIZE - p)
count = GLOBALMEM_SIZE - p; if (copy_to_user(buf, dev->mem + p, count)) {
ret = -EFAULT;
} else {
*ppos += count;
ret = count; printk(KERN_INFO "read %u bytes(s) from %lu\n", count, p);
} return ret;
}

其中*ppos是读的位置相对于文件开头的漂移,如果该漂移大于或等于GLOBALMEM_SIZE,表示文件已经到了末尾,返回0(EOF)。

写函数的实现如下所示:

static ssize_t globalmem_write(struct file *filp, const char __user *buf, size_t size, loff_t *ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = ;
struct globalmem_dev *dev = filp->private_data; if (p > GLOBALMEM_SIZE)
return ;
if (count > GLOBALMEM_SIZE - p)
count = GLOBALMEM_SIZE - p; if (copy_from_user(dev->mem + p, buf, count)) {
return -EFAULT;
} else {
*ppos += count;
ret = count; printk(KERN_INFO "written %u bytes(s) from %lu\n", count, p);
} return ret;
}

(4)seek函数的实现

seek()函数对文件定位的起始地址可以是文件开头(SEEK_SET,0)、当前位置(SEEK_CUR,1)和文件末尾(SEEK_END,2),在定位的时候,要检查用户请求的合法性,若不合法,函数返回错误号,若合法,更新文件的当前位置,并返回新的位置,实现如下所示:

static loff_t globalmem_llseek(struct file *filp, loff_t offset, int orig)
{
loff_t ret = ;
switch (orig) {
case :
if (offset < ) {
ret = -EINVAL;
break;
}
if ((unsigned int)offset > GLOBALMEM_SIZE) {
ret = -EINVAL;
break;
}
filp->f_pos = (unsigned int)offset;
ret = filp->f_pos;
break;
case :
if ((filp->f_pos + offset) > GLOBALMEM_SIZE) {
ret = -EINVAL;
break;
}
if ((filp->f_pos + offset) < ) {
ret = -EINVAL;
break;
}
filp->f_pos += offset;
ret = filp->f_pos;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}

(5)ioctl函数实现

static long globalmem_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct globalmem_dev *dev = filp->private_data; switch (cmd) {
case MEM_CLEAR:
memset(dev->mem, , GLOBALMEM_SIZE);
printk(KERN_INFO "globalmem is set to zero\n");
break;
default:
return -EINVAL;
} return ;
}

(6)使用文件的私有数据

将文件的私有数据private_data指向设备的结构体,然后使用read()、write()、ioctl()、llseek()等函数通过private_data访问设备结构体,如下所示:

static int globalmem_open(struct inode *inode, struct file *filp)
{
filp->private_data = globalmem_devp;
return ;
} static int globalmem_release(struct inode *inode, struct file *filp)
{
return ;
}

(7)完整的globalmem驱动代码

#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/slab.h>
#include <linux/uaccess.h> #define GLOBALMEM_SIZE 0x1000
#define MEM_CLEAR 0x1
#define GLOBALMEM_MAJOR 230 static int globalmem_major = GLOBALMEM_MAJOR;
module_param(globalmem_major, int, S_IRUGO); struct globalmem_dev {
struct cdev cdev;
unsigned char mem[GLOBALMEM_SIZE];
}; struct globalmem_dev *globalmem_devp; static int globalmem_open(struct inode *inode, struct file *filp)
{
filp->private_data = globalmem_devp;
return ;
} static int globalmem_release(struct inode *inode, struct file *filp)
{
return ;
} static long globalmem_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct globalmem_dev *dev = filp->private_data; switch (cmd) {
case MEM_CLEAR:
memset(dev->mem, , GLOBALMEM_SIZE);
printk(KERN_INFO "globalmem is set to zero\n");
break;
default:
return -EINVAL;
} return ;
} static ssize_t globalmem_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = ;
struct globalmem_dev *dev = filp->private_data; if (p > GLOBALMEM_SIZE)
return ;
if (count > GLOBALMEM_SIZE - p)
count = GLOBALMEM_SIZE - p; if (copy_to_user(buf, dev->mem + p, count)) {
ret = -EFAULT;
} else {
*ppos += count;
ret = count; printk(KERN_INFO "read %u bytes(s) from %lu\n", count, p);
} return ret;
} static ssize_t globalmem_write(struct file *filp, const char __user *buf, size_t size, loff_t *ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = ;
struct globalmem_dev *dev = filp->private_data; if (p > GLOBALMEM_SIZE)
return ;
if (count > GLOBALMEM_SIZE - p)
count = GLOBALMEM_SIZE - p; if (copy_from_user(dev->mem + p, buf, count)) {
return -EFAULT;
} else {
*ppos += count;
ret = count; printk(KERN_INFO "written %u bytes(s) from %lu\n", count, p);
} return ret;
} static loff_t globalmem_llseek(struct file *filp, loff_t offset, int orig)
{
loff_t ret = ;
switch (orig) {
case :
if (offset < ) {
ret = -EINVAL;
break;
}
if ((unsigned int)offset > GLOBALMEM_SIZE) {
ret = -EINVAL;
break;
}
filp->f_pos = (unsigned int)offset;
ret = filp->f_pos;
break;
case :
if ((filp->f_pos + offset) > GLOBALMEM_SIZE) {
ret = -EINVAL;
break;
}
if ((filp->f_pos + offset) < ) {
ret = -EINVAL;
break;
}
filp->f_pos += offset;
ret = filp->f_pos;
break;
default:
ret = -EINVAL;
break;
}
return ret;
} static const struct file_operations globalmem_fops = {
.owner = THIS_MODULE,
.llseek = globalmem_llseek,
.read = globalmem_read,
.write = globalmem_write,
.unlocked_ioctl = globalmem_ioctl,
.open = globalmem_open,
.release = globalmem_release,
}; static void globalmem_setup_cdev(struct globalmem_dev *dev, int index)
{
int err, devno = MKDEV(globalmem_major, index); cdev_init(&dev->cdev, &globalmem_fops);
dev->cdev.owner = THIS_MODULE;
err = cdev_add(&dev->cdev, devno, );
if (err) {
printk(KERN_NOTICE "Error %d adding globalmem %d", err, index);
}
} static int __init globalmem_init(void)
{
int ret;
dev_t devno = MKDEV(globalmem_major, ); if (globalmem_major) {
ret = register_chrdev_region(devno, , "globalmem");
} else {
ret = alloc_chrdev_region(&devno, , , "globalmem");
globalmem_major = MAJOR(devno);
}
if (ret < )
return ret; globalmem_devp = kzalloc(sizeof(struct globalmem_dev), GFP_KERNEL);
if (!globalmem_devp) {
ret = -ENOMEM;
goto fail_malloc;
} globalmem_setup_cdev(globalmem_devp, );
return ; fail_malloc:
unregister_chrdev_region(devno, );
return ret;
} static void __exit globalmem_exit(void)
{
cdev_del(&globalmem_devp->cdev);
kfree(globalmem_devp);
unregister_chrdev_region(MKDEV(globalmem_major, ), );
} module_init(globalmem_init);
module_exit(globalmem_exit); MODULE_AUTHOR("HLY");
MODULE_LICENSE("GPL");

(8)globalmem驱动验证

使用make命令将源文件编译出驱动模块globalmem.ko文件,编译需要的Makefile如下所示:

# Makefile for globalmem driver

obj-m += globalmem.o

all:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules clean:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

然后使用驱动模块命令加载模块,如下:

$ sudo insmod globalmem.ko
$ lsmod

然后使用下面的命令查看globalmem虚拟设备的设备号:

$ cat /proc/devices

然后,使用mknod创建设备节点:

# mknod /dev/globalmem c
# ls -al /dev/globalmem

接下来使用命令对该文件进行读写以测试:

# echo “Hello World” > /dev/globalmem
# cat /dev/globalmem

也可以使用系统调用函数open、write和read进行该虚拟设备的测试,测试的app.c文件如下:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h> #define LENGTH 100 int main(int argc, char *argv[])
{
int fd,len;
char str[LENGTH]; fd = open("/dev/globalmem", O_RDWR);
if (fd) {
write(fd, "Hello World", strlen("Hello World"));
close(fd);
} fd = open("/dev/globalmem", O_RDWR);
len = read(fd, str, LENGTH);
str[len] = '\0';
printf("str:%s\n", str);
close(fd); return ;
}

编写该app.c的Makefile文件,如下:

# Makefile by HLY

all: myapp

# Which compiler
CC = gcc # Where are include files
INCLUDE = . # Options for development
CFLAGS = -g -Wall -ansi myapp: app.o
$(CC) -o myapp app.o clean:
rm -rf *.o myapp

使用make命令将app.c编译成可执行文件myapp,然后执行程序,即可完成globalmem虚拟设备/dev/globalmem的读写测试。

参考:

《Linux设备驱动开发详解:基于最新的Linux 4.0内核》

Linux字符设备驱动实例—globalmem驱动的更多相关文章

  1. Linux字符设备驱动框架

    字符设备是Linux三大设备之一(另外两种是块设备,网络设备),字符设备就是字节流形式通讯的I/O设备,绝大部分设备都是字符设备,常见的字符设备包括鼠标.键盘.显示器.串口等等,当我们执行ls -l ...

  2. Linux字符设备驱动结构(一)--cdev结构体、设备号相关知识机械【转】

    本文转载自:http://blog.csdn.net/zqixiao_09/article/details/50839042 一.字符设备基础知识 1.设备驱动分类 linux系统将设备分为3类:字符 ...

  3. Linux字符设备驱动基本结构

    1.Linux字符设备驱动的基本结构 Linux系统下具有三种设备,分别是字符设备.块设备和网络设备,Linux下的字符设备是指只能一个字节一个字节读写的设备,不能随机读取设备内存中某一数据,读取数据 ...

  4. (57)Linux驱动开发之三Linux字符设备驱动

    1.一般情况下,对每一种设备驱动都会定义一个软件模块,这个工程模块包含.h和.c文件,前者定义该设备驱动的数据结构并声明外部函数,后者进行设备驱动的具体实现. 2.典型的无操作系统下的逻辑开发程序是: ...

  5. 深入理解Linux字符设备驱动

    文章从上层应用访问字符设备驱动开始,一步步地深入分析Linux字符设备的软件层次.组成框架和交互.如何编写驱动.设备文件的创建和mdev原理,对Linux字符设备驱动有全面的讲解.本文整合之前发表的& ...

  6. Smart210学习记录----beep linux字符设备驱动

    今天搞定了beep linux字符设备驱动,心里还是很开心的,哈哈...但在完成的过程中却遇到了一个非常棘手的问题,花费了我大量的时间,,,, 还是把问题描述一下吧,好像这个问题很普遍的,网上许多解决 ...

  7. Linux字符设备驱动实现

    Linux字符设备驱动实现 要求 编写一个字符设备驱动,并利用对字符设备的同步操作,设计实现一个聊天程序.可以有一个读,一个写进程共享该字符设备,进行聊天:也可以由多个读和多个写进程共享该字符设备,进 ...

  8. linux字符设备驱动--基本知识介绍

    一.设备驱动的分类 1.字符设备 字符设备是指那些能一个字节一个字节读取数据的设备,如LED灯.键盘.鼠标等.字符设备一般需要在驱动层实现open().close().read().write().i ...

  9. Linux字符设备简单示例

    1. Linux字符设备是一种按字节来访问的设备,字符驱动则负责驱动字符设备,这样的驱动通常实现open.close.read和write系统调用.例如:串口.Led.按键等. 2. 通过字符设备文件 ...

随机推荐

  1. js里apply用法

    1.Function.apply,用于构造函数的继承,继承另外一个构建对象的属性与方法 function People(name,age){     this.name = name;     thi ...

  2. 题解 LA2911

    题目大意 多组数据,每组数据给定整数 \(m,p,a,b\),满足 \(a>0\),\(2\leq p\leq12\) 且 \(p\) 为偶数.要求求出一列数 \(x_1,x_2,\cdots, ...

  3. react native redux 草稿

    Provider > Provider > 使组件层级中的 方法都能够获得 Redux store.正常情况下,你的根组件应该嵌套在 Provider 中才能使用 方法. 如果你真的不想把 ...

  4. PHP的简单了解

    PHP 标识符/关键字/数据类型 标识符:其实标识符就是变量的名称,函数与类的名称也是标识符.PHP中标识符的规则: 1.标识符可以是任意长度的字母.数字.下划线,且不得以数字开头. 2.PHP中标识 ...

  5. Xamarin.Forms一些常见问题

    安装 1.查看Xaramin.Forms的版本 在vs项目中查看引用的包(Xamarin.Forms)的版本,或者直接进文件夹看 C:\Microsoft\Xamarin\NuGet\xamarin. ...

  6. ent 基本使用十七 分页与排序

    ent 提供了方便的数据分页以及排序处理 limit 分页 users, err := client.User. Query(). Limit(n). All(ctx) offset 分页 users ...

  7. <转>python列表、元组、集合、字典、json相互转换以及其他基础入门

    列表元组转其他 # 列表转集合(去重) list1 = [6, 7, 7, 8, 8, 9] set(list1) # {6, 7, 8, 9} #两个列表转字典 list1 = ['key1','k ...

  8. Program terminated with signal 6, Aborted. (最后发现是数组越界导致)

    外网崩溃现象: 1.多台物理机中的多个进程消失,而且都是场景进程. 2.core文件都很小,看了 ulimit -a 和 cat proc/pid/limits  (都很正常.看这个是为了以后core ...

  9. eureka中显示有服务但是通过ribbon调用显示No instances available for service-hello的问题

    一,问题 采取eureka集群.客户端通过Ribbon调用服务,Ribbon端报下列异常 ? 1 2 3 4 5 6 7 java.net.UnknownHostException: SERVICE- ...

  10. C# Microsoft.Office.Interop.Owc11 导出excel文件

    C# Microsoft.Office.Interop.Owc11 导出excel文件 1.新建项SupremeWindowsForms窗体应用项目(项目平台设置称X86) 注意:因为大多数第三方写的 ...