Linux字符设备驱动实例—globalmem驱动
1、globalmem虚拟设备实例
globalmem为“全局内存”的意思,在globalmem字符设备中会分配一片大小为GLOBALMEM_SIZE(4KB)的内存空间,并在驱动中提供对这片内存的读写、控制和定位函数,供用户空间的进程能通过Linux系统调用获取和设置这片内存。
(1)头文件、宏以及设备结构体
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/slab.h>
#include <linux/uaccess.h> #define GLOBALMEM_SIZE 0x1000
#define MEM_CLEAR 0x1
#define GLOBALMEM_MAJOR 230 static int globalmem_major = GLOBALMEM_MAJOR;
module_param(globalmem_major, int, S_IRUGO); struct globalmem_dev {
struct cdev cdev;
unsigned char mem[GLOBALMEM_SIZE];
}; struct globalmem_dev *globalmem_devp;
定义的globalmem_dev结构体中,包含了对应于globalmem字符设备的cdev,使用的内存mem[GLOBALMEM_SIZE]。
(2)globalmem设备驱动模块的加载和卸载函数
static void globalmem_setup_cdev(struct globalmem_dev *dev, int index)
{
int err, devno = MKDEV(globalmem_major, index); cdev_init(&dev->cdev, &globalmem_fops);
dev->cdev.owner = THIS_MODULE;
err = cdev_add(&dev->cdev, devno, );
if (err) {
printk(KERN_NOTICE "Error %d adding globalmem %d", err, index);
}
} static int __init globalmem_init(void)
{
int ret;
dev_t devno = MKDEV(globalmem_major, ); if (globalmem_major) {
ret = register_chrdev_region(devno, , "globalmem");
} else {
ret = alloc_chrdev_region(&devno, , , "globalmem");
globalmem_major = MAJOR(devno);
}
if (ret < )
return ret; globalmem_devp = kzalloc(sizeof(struct globalmem_dev), GFP_KERNEL);
if (!globalmem_devp) {
ret = -ENOMEM;
goto fail_malloc;
} globalmem_setup_cdev(globalmem_devp, );
return ; fail_malloc:
unregister_chrdev_region(devno, );
return ret;
} static void __exit globalmem_exit(void)
{
cdev_del(&globalmem_devp->cdev);
kfree(globalmem_devp);
unregister_chrdev_region(MKDEV(globalmem_major, ), );
}
globalmem_setup_cdev()函数完成cdev的初始化化和添加,kzalloc()申请了一份globalmem_dev结构体的内存,并将其清0,在cdev_init()函数中,与globalmem的cdev关联的file_operations结构体如下所示:
static const struct file_operations globalmem_fops = {
.owner = THIS_MODULE,
.open = globalmem_open,
.release = globalmem_release,
.read = globalmem_read,
.write = globalmem_write,
.llseek = globalmem_llseek,
.unlocked_ioctl = globalmem_ioctl,
};
(3)读写函数的实现
首先是读函数,函数的实现如下所示:
static ssize_t globalmem_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = ;
struct globalmem_dev *dev = filp->private_data; if (p > GLOBALMEM_SIZE)
return ;
if (count > GLOBALMEM_SIZE - p)
count = GLOBALMEM_SIZE - p; if (copy_to_user(buf, dev->mem + p, count)) {
ret = -EFAULT;
} else {
*ppos += count;
ret = count; printk(KERN_INFO "read %u bytes(s) from %lu\n", count, p);
} return ret;
}
其中*ppos是读的位置相对于文件开头的漂移,如果该漂移大于或等于GLOBALMEM_SIZE,表示文件已经到了末尾,返回0(EOF)。
写函数的实现如下所示:
static ssize_t globalmem_write(struct file *filp, const char __user *buf, size_t size, loff_t *ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = ;
struct globalmem_dev *dev = filp->private_data; if (p > GLOBALMEM_SIZE)
return ;
if (count > GLOBALMEM_SIZE - p)
count = GLOBALMEM_SIZE - p; if (copy_from_user(dev->mem + p, buf, count)) {
return -EFAULT;
} else {
*ppos += count;
ret = count; printk(KERN_INFO "written %u bytes(s) from %lu\n", count, p);
} return ret;
}
(4)seek函数的实现
seek()函数对文件定位的起始地址可以是文件开头(SEEK_SET,0)、当前位置(SEEK_CUR,1)和文件末尾(SEEK_END,2),在定位的时候,要检查用户请求的合法性,若不合法,函数返回错误号,若合法,更新文件的当前位置,并返回新的位置,实现如下所示:
static loff_t globalmem_llseek(struct file *filp, loff_t offset, int orig)
{
loff_t ret = ;
switch (orig) {
case :
if (offset < ) {
ret = -EINVAL;
break;
}
if ((unsigned int)offset > GLOBALMEM_SIZE) {
ret = -EINVAL;
break;
}
filp->f_pos = (unsigned int)offset;
ret = filp->f_pos;
break;
case :
if ((filp->f_pos + offset) > GLOBALMEM_SIZE) {
ret = -EINVAL;
break;
}
if ((filp->f_pos + offset) < ) {
ret = -EINVAL;
break;
}
filp->f_pos += offset;
ret = filp->f_pos;
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
(5)ioctl函数实现
static long globalmem_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct globalmem_dev *dev = filp->private_data; switch (cmd) {
case MEM_CLEAR:
memset(dev->mem, , GLOBALMEM_SIZE);
printk(KERN_INFO "globalmem is set to zero\n");
break;
default:
return -EINVAL;
} return ;
}
(6)使用文件的私有数据
将文件的私有数据private_data指向设备的结构体,然后使用read()、write()、ioctl()、llseek()等函数通过private_data访问设备结构体,如下所示:
static int globalmem_open(struct inode *inode, struct file *filp)
{
filp->private_data = globalmem_devp;
return ;
} static int globalmem_release(struct inode *inode, struct file *filp)
{
return ;
}
(7)完整的globalmem驱动代码
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/slab.h>
#include <linux/uaccess.h> #define GLOBALMEM_SIZE 0x1000
#define MEM_CLEAR 0x1
#define GLOBALMEM_MAJOR 230 static int globalmem_major = GLOBALMEM_MAJOR;
module_param(globalmem_major, int, S_IRUGO); struct globalmem_dev {
struct cdev cdev;
unsigned char mem[GLOBALMEM_SIZE];
}; struct globalmem_dev *globalmem_devp; static int globalmem_open(struct inode *inode, struct file *filp)
{
filp->private_data = globalmem_devp;
return ;
} static int globalmem_release(struct inode *inode, struct file *filp)
{
return ;
} static long globalmem_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct globalmem_dev *dev = filp->private_data; switch (cmd) {
case MEM_CLEAR:
memset(dev->mem, , GLOBALMEM_SIZE);
printk(KERN_INFO "globalmem is set to zero\n");
break;
default:
return -EINVAL;
} return ;
} static ssize_t globalmem_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = ;
struct globalmem_dev *dev = filp->private_data; if (p > GLOBALMEM_SIZE)
return ;
if (count > GLOBALMEM_SIZE - p)
count = GLOBALMEM_SIZE - p; if (copy_to_user(buf, dev->mem + p, count)) {
ret = -EFAULT;
} else {
*ppos += count;
ret = count; printk(KERN_INFO "read %u bytes(s) from %lu\n", count, p);
} return ret;
} static ssize_t globalmem_write(struct file *filp, const char __user *buf, size_t size, loff_t *ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = ;
struct globalmem_dev *dev = filp->private_data; if (p > GLOBALMEM_SIZE)
return ;
if (count > GLOBALMEM_SIZE - p)
count = GLOBALMEM_SIZE - p; if (copy_from_user(dev->mem + p, buf, count)) {
return -EFAULT;
} else {
*ppos += count;
ret = count; printk(KERN_INFO "written %u bytes(s) from %lu\n", count, p);
} return ret;
} static loff_t globalmem_llseek(struct file *filp, loff_t offset, int orig)
{
loff_t ret = ;
switch (orig) {
case :
if (offset < ) {
ret = -EINVAL;
break;
}
if ((unsigned int)offset > GLOBALMEM_SIZE) {
ret = -EINVAL;
break;
}
filp->f_pos = (unsigned int)offset;
ret = filp->f_pos;
break;
case :
if ((filp->f_pos + offset) > GLOBALMEM_SIZE) {
ret = -EINVAL;
break;
}
if ((filp->f_pos + offset) < ) {
ret = -EINVAL;
break;
}
filp->f_pos += offset;
ret = filp->f_pos;
break;
default:
ret = -EINVAL;
break;
}
return ret;
} static const struct file_operations globalmem_fops = {
.owner = THIS_MODULE,
.llseek = globalmem_llseek,
.read = globalmem_read,
.write = globalmem_write,
.unlocked_ioctl = globalmem_ioctl,
.open = globalmem_open,
.release = globalmem_release,
}; static void globalmem_setup_cdev(struct globalmem_dev *dev, int index)
{
int err, devno = MKDEV(globalmem_major, index); cdev_init(&dev->cdev, &globalmem_fops);
dev->cdev.owner = THIS_MODULE;
err = cdev_add(&dev->cdev, devno, );
if (err) {
printk(KERN_NOTICE "Error %d adding globalmem %d", err, index);
}
} static int __init globalmem_init(void)
{
int ret;
dev_t devno = MKDEV(globalmem_major, ); if (globalmem_major) {
ret = register_chrdev_region(devno, , "globalmem");
} else {
ret = alloc_chrdev_region(&devno, , , "globalmem");
globalmem_major = MAJOR(devno);
}
if (ret < )
return ret; globalmem_devp = kzalloc(sizeof(struct globalmem_dev), GFP_KERNEL);
if (!globalmem_devp) {
ret = -ENOMEM;
goto fail_malloc;
} globalmem_setup_cdev(globalmem_devp, );
return ; fail_malloc:
unregister_chrdev_region(devno, );
return ret;
} static void __exit globalmem_exit(void)
{
cdev_del(&globalmem_devp->cdev);
kfree(globalmem_devp);
unregister_chrdev_region(MKDEV(globalmem_major, ), );
} module_init(globalmem_init);
module_exit(globalmem_exit); MODULE_AUTHOR("HLY");
MODULE_LICENSE("GPL");
(8)globalmem驱动验证
使用make命令将源文件编译出驱动模块globalmem.ko文件,编译需要的Makefile如下所示:
# Makefile for globalmem driver obj-m += globalmem.o all:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules clean:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean
然后使用驱动模块命令加载模块,如下:
$ sudo insmod globalmem.ko
$ lsmod
然后使用下面的命令查看globalmem虚拟设备的设备号:
$ cat /proc/devices
然后,使用mknod创建设备节点:
# mknod /dev/globalmem c
# ls -al /dev/globalmem
接下来使用命令对该文件进行读写以测试:
# echo “Hello World” > /dev/globalmem
# cat /dev/globalmem
也可以使用系统调用函数open、write和read进行该虚拟设备的测试,测试的app.c文件如下:
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h> #define LENGTH 100 int main(int argc, char *argv[])
{
int fd,len;
char str[LENGTH]; fd = open("/dev/globalmem", O_RDWR);
if (fd) {
write(fd, "Hello World", strlen("Hello World"));
close(fd);
} fd = open("/dev/globalmem", O_RDWR);
len = read(fd, str, LENGTH);
str[len] = '\0';
printf("str:%s\n", str);
close(fd); return ;
}
编写该app.c的Makefile文件,如下:
# Makefile by HLY all: myapp # Which compiler
CC = gcc # Where are include files
INCLUDE = . # Options for development
CFLAGS = -g -Wall -ansi myapp: app.o
$(CC) -o myapp app.o clean:
rm -rf *.o myapp
使用make命令将app.c编译成可执行文件myapp,然后执行程序,即可完成globalmem虚拟设备/dev/globalmem的读写测试。
参考:
《Linux设备驱动开发详解:基于最新的Linux 4.0内核》
Linux字符设备驱动实例—globalmem驱动的更多相关文章
- Linux字符设备驱动框架
字符设备是Linux三大设备之一(另外两种是块设备,网络设备),字符设备就是字节流形式通讯的I/O设备,绝大部分设备都是字符设备,常见的字符设备包括鼠标.键盘.显示器.串口等等,当我们执行ls -l ...
- Linux字符设备驱动结构(一)--cdev结构体、设备号相关知识机械【转】
本文转载自:http://blog.csdn.net/zqixiao_09/article/details/50839042 一.字符设备基础知识 1.设备驱动分类 linux系统将设备分为3类:字符 ...
- Linux字符设备驱动基本结构
1.Linux字符设备驱动的基本结构 Linux系统下具有三种设备,分别是字符设备.块设备和网络设备,Linux下的字符设备是指只能一个字节一个字节读写的设备,不能随机读取设备内存中某一数据,读取数据 ...
- (57)Linux驱动开发之三Linux字符设备驱动
1.一般情况下,对每一种设备驱动都会定义一个软件模块,这个工程模块包含.h和.c文件,前者定义该设备驱动的数据结构并声明外部函数,后者进行设备驱动的具体实现. 2.典型的无操作系统下的逻辑开发程序是: ...
- 深入理解Linux字符设备驱动
文章从上层应用访问字符设备驱动开始,一步步地深入分析Linux字符设备的软件层次.组成框架和交互.如何编写驱动.设备文件的创建和mdev原理,对Linux字符设备驱动有全面的讲解.本文整合之前发表的& ...
- Smart210学习记录----beep linux字符设备驱动
今天搞定了beep linux字符设备驱动,心里还是很开心的,哈哈...但在完成的过程中却遇到了一个非常棘手的问题,花费了我大量的时间,,,, 还是把问题描述一下吧,好像这个问题很普遍的,网上许多解决 ...
- Linux字符设备驱动实现
Linux字符设备驱动实现 要求 编写一个字符设备驱动,并利用对字符设备的同步操作,设计实现一个聊天程序.可以有一个读,一个写进程共享该字符设备,进行聊天:也可以由多个读和多个写进程共享该字符设备,进 ...
- linux字符设备驱动--基本知识介绍
一.设备驱动的分类 1.字符设备 字符设备是指那些能一个字节一个字节读取数据的设备,如LED灯.键盘.鼠标等.字符设备一般需要在驱动层实现open().close().read().write().i ...
- Linux字符设备简单示例
1. Linux字符设备是一种按字节来访问的设备,字符驱动则负责驱动字符设备,这样的驱动通常实现open.close.read和write系统调用.例如:串口.Led.按键等. 2. 通过字符设备文件 ...
随机推荐
- Go语言 - 结构体 | 方法
自定义类型和类型别名 自定义类型 在Go语言中有一些基本的数据类型,如string.整型.浮点型.布尔等数据类型, Go语言中可以使用type关键字来定义自定义类型. 自定义类型是定义了一个全新的类型 ...
- can总线的远程帧(遥控帧)—说的很形象
所谓“远程帧”是一个传统翻译上的误区.Remote Frame实际上它的意义是“遥控帧”,发起方发起特定ID的远程帧,并且只发送ID部分,那么与其ID相符的终端设备就有义务在后半段的数据部分接管总线控 ...
- 大文件上传组件webupload插件
之前仿造uploadify写了一个HTML5版的文件上传插件,没看过的朋友可以点此先看一下~得到了不少朋友的好评,我自己也用在了项目中,不论是用户头像上传,还是各种媒体文件的上传,以及各种个性的业务需 ...
- Vue的SEO问题汇总
方式一 思否 https://segmentfault.com/q/1010000011824706 SSR 和 Nuxt.js : https://zh.nuxtjs.org/ https://se ...
- MongoDB主从
环境示例: 系统:Centos6.6x64 安装目录:/opt/ 主:172.16.15.101 从:172.16.15.102 1.下载安装: # wget https://fastdl.mongo ...
- Entity Framework Core Query Types
This feature was added in EF Core 2.1 Query types are non-entity types (classes) that form part of t ...
- public private protected 修饰符整理
1.public定义的类或方法:任何类的实例都可以访问 2.private定义的属性和方法:只能该类内部使用:如果子类要访问父类的private属性:必须实现__set()和__get()方法: 3. ...
- Android Studio软件技术基础 —Android项目描述---1-类的概念-android studio 组件属性-+标志-Android Studio 连接真机不识别其他途径
学习android对我来说,就是兴趣,所以我以自己的兴趣写出的文章,希望各位多多支持!多多点赞,评论讨论加关注. 最近有点忙碌,对于我来说,学习Android开发,是对于我的考验,最近一位大佬发给我一 ...
- java并发编程(一)线程状态 & 线程中断 & 线程间的协作
参考文章: Java线程的5种状态及切换:http://blog.csdn.net/pange1991/article/details/53860651 线程的5种状态: 1. 新建(NEW):新创建 ...
- [Beta阶段]第十次Scrum Meeting
Scrum Meeting博客目录 [Beta阶段]第十次Scrum Meeting 基本信息 名称 时间 地点 时长 第十次Scrum Meeting 19/05/16 大运村寝室6楼 30min ...