【分析】

维护一个下凸包。

首先依照斜率来从小到大排序。

考虑斜率同样的,肯定仅仅能选截距大的,把截距小的给筛掉。

然后用栈来维护下凸包。先压入前两条直线。

然后对于每一条直线i,设栈中上一条直线p=stk[stk[0]]和上上条直线q=stk[stk[0]-1]。

找到i与p的交点m。p与q的交点n。

画三条直线,把n点看成固定的,因为斜率从小到大,要使得上一条直线p看不到。那么m一定在n的左边,即m.x<=n.x。

假设看不到,就退栈,直到在右边。

最后输出,注意可能会存在n=1的情况。这个么,随便处理罢...

PS:网上的代码大多数都是错的,结果还能AC,这道题的数据非常水哟。

【代码】

<span style="font-size:18px;">#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <cmath>
using namespace std; const int N=50000;
const double eps=1e-5; struct Line
{
double k,b;
int id;
}line[N],_line[N];
struct Point
{
double x,y;
}now,last;
int n,_n,stk[N]; inline int dc(double i,double j)
{
if (fabs(i-j)<eps) return 0;
return i<j?-1:1;
} int cmp(Line La,Line Lb)
{
int r=dc(La.k,Lb.k);
return r?r<0:dc(La.b,Lb.b)>0;
} inline Point get_point(int i,int j)
{
double k1=_line[i].k,b1=_line[i].b,k2=_line[j].k,b2=_line[j].b; Point P;
P.x=(b2-b1)/(k1-k2);
P.y=(b1*k2-b2*k1)/(k1-k2);
return P;
} inline int cmp1(int i,int j)
{
return _line[i].id<_line[j].id;
} int main(void)
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
scanf("%lf%lf",&line[i].k,&line[i].b),line[i].id=i; sort(line+1,line+n+1,cmp);
for (int i=1;i<=n;i++)
{
if (_n&&!dc(line[i].k,_line[_n].k)) continue;
_line[++_n]=line[i];
} stk[++stk[0]]=1,stk[++stk[0]]=2;
for (int i=3;i<=_n;i++)
{
if (stk[0]&&!dc(_line[stk[stk[0]]].k,_line[i].k)) continue;
for (;stk[0]>=2;)
{
last=get_point(stk[stk[0]-1],stk[stk[0]]);
now=get_point(stk[stk[0]],i);
if (last.x>=now.x) stk[stk[0]--]=0; else break;
}
stk[++stk[0]]=i;
} sort(stk+1,stk+stk[0]+1,cmp1);
for (int i=1;i<=stk[0];i++)
{
if (!line[i].id) continue;
printf("%d ",_line[stk[i]].id);
}
printf("\n"); return 0;
}</span>

【BZOJ】1007 水平可见直线的更多相关文章

  1. BZOJ 1007 水平可见直线 | 计算几何

    BZOJ 1007 水平可见直线 题面 平面直角坐标系上有一些直线,请求出在纵坐标无限大处能看到哪些直线. 题解 将所有直线按照斜率排序(平行的直线只保留最高的直线),维护一个栈,当当前直线与栈顶直线 ...

  2. BZOJ 1007 水平可见直线

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.    例如,对于直线:    ...

  3. 【BZOJ】【1007】【HNOI2008】水平可见直线

    计算几何初步 其实是维护一个类似下凸壳的东西?画图后发现其实斜率是单调递增的,交点的横坐标也是单调递增的,所以排序一下搞个单调栈来做就可以了…… 看了hzwer的做法…… /************* ...

  4. bzoj 1007 [HNOI2008]水平可见直线(单调栈)

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5120  Solved: 1899[Submit][Sta ...

  5. BZOJ 1007 [HNOI2008]水平可见直线

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4453  Solved: 1636[Submit][Sta ...

  6. 2018.07.03 BZOJ 1007: [HNOI2008]水平可见直线(简单计算几何)

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB Description 在xoy直角坐标平面上有n条直线L1,L2,-Ln, ...

  7. BZOJ 1007 [HNOI2008]水平可见直线 (栈)

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7940  Solved: 3030[Submit][Sta ...

  8. BZOJ 1007: [HNOI2008]水平可见直线 栈/计算几何

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline ...

  9. BZOJ 1007: [HNOI2008]水平可见直线 平面直线

    1007: [HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则 ...

随机推荐

  1. SQL注入与xss

    1. 什么是SQL注入 所谓SQL注入,就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令.通过递交参数构造巧妙的SQL语句,从而成功获取 ...

  2. 性能测试之五--webservices接口测试

    下面我们进行webservices接口的讲解,包括脚本生成,参数化和关联. 以天气预报的接口为例,接口地址为: http://ws.webxml.com.cn/WebServices/WeatherW ...

  3. [图论训练]BZOJ 1624: [Usaco2008 Open] Clear And Present Danger 寻宝之路【floyd】

    Description     农夫约翰正驾驶一条小艇在牛勒比海上航行.     海上有N(1≤N≤100)个岛屿,用1到N编号.约翰从1号小岛出发,最后到达N号小岛.一 张藏宝图上说,如果他的路程上 ...

  4. mybatis配置报错(properties?,settings?,typeAliases?,typeHandlers?,objectFactory?,objectWrapperFactory?,reflectorFactory?,plugins?,environments?,databaseIdProvider?,mappers?)

    如下报错:解决方案:要按照提示的顺序添加属性,(properties?,settings?,typeAliases?,typeHandlers?,objectFactory?,objectWrappe ...

  5. idea16使用maven命令clean、编译、打包jar或者war

    项目环境:idea16+jdk1.7+maven-3.3.9 项目说明:编写简单的java类,使用maven命令生成jar包,然后执行------->"java  -classpath ...

  6. 商务旅行(codevs 1036)

    题目描述 Description 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从首都出发,其他各城镇之间都有道路连接,任 ...

  7. LVM 类型的 Storage Pool

    LVM 类型的 Storage Pool 不仅一个文件可以分配给客户机作为虚拟磁盘,宿主机上 VG 中的 LV 也可以作为虚拟磁盘分配给虚拟机使用. 不过,LV 由于没有磁盘的 MBR 引导记录,不能 ...

  8. SQL 随机取出一条数据

    今天遇到一需求,需要随机取出一条数据.网上找了下,sqlserver自带的有newID()这个函数,可以随机出来一个guid,用来取随机数还是蛮不错的. 直接上SQL: select top 1 *, ...

  9. Elixir与编辑器安装

    安装 Elixir 每个操作系统的安装说明可以在 elixir-lang.org 网站上 Installing Elixir 部分找到. 安装后你可以很轻松地确认所安装的版本. ~$:elixir - ...

  10. BZOJ 4034 [HAOI2015]树上操作(树链剖分)

    题目链接  BZOJ4034 这道题树链剖分其实就可以了. 单点更新没问题. 相当于更新 [f[x], f[x]]这个区间. f[x]表示树链剖分之后每个点的新的标号. 区间更新的话类似DFS序,求出 ...