先看看。

通常模数常见的有998244353,1004535809,469762049,这几个的原根都是3。
所求的项数还不能超过2的23次方(因为998244353的分解)。

感觉没啥用。

#include <cstdio>
#include <cstring> template <class T>
inline void swap(T &a, T &b)
{
T c;
c = a;
a = b;
b = c;
} const int siz = ; const int P = , G = ; inline int pow(int a, int b)
{
int r = ; while (b)
{
if (b & )
r = 1LL * r * a % P; b >>= , a = 1LL * a * a % P;
} return r;
} inline void calculateNTT(int *s, int n, int f)
{
{
int cnt = ; static int rev[siz]; while (n >> cnt)++cnt; --cnt; memset(rev, , sizeof rev); for (int i = ; i < n; ++i)
{
rev[i] |= rev[i >> ] >> ;
rev[i] |= (i & ) << (cnt - );
} for (int i = ; i < n; ++i)if (i < rev[i])swap(s[i], s[rev[i]]);
} {
for (int i = ; i < n; i <<= )
{
int wn = pow(G, (P - ) / (i * )); if (f == -)wn = pow(wn, P - ); for (int j = ; j < n; j += (i << ))
{
int wk = ; for (int k = ; k < i; ++k, wk = 1LL * wk * wn % P)
{
int x = s[j + k];
int y = 1LL * s[i + j + k] * wk % P; s[j + k] = x + y;
s[i + j + k] = x - y; s[j + k] = (s[j + k] % P + P) % P;
s[i + j + k] = (s[i + j + k] % P + P) % P;
}
}
}
} {
if (f == -)
{
int inv = pow(n, P - ); for (int i = ; i < n; ++i)
s[i] = 1LL * s[i] * inv % P;
}
}
} signed main(void)
{
static char sa[siz];
static char sb[siz]; scanf("%s", sa);
scanf("%s", sb); static int la, a[siz];
static int lb, b[siz]; la = strlen(sa);
lb = strlen(sb); for (int i = ; i < la; ++i)a[i] = sa[la - i - ] - '';
for (int i = ; i < lb; ++i)b[i] = sb[lb - i - ] - ''; int len; for (len = ; len < la || len < lb; len <<= ); calculateNTT(a, len << , +);
calculateNTT(b, len << , +); for (int i = ; i < len << ; ++i)a[i] = 1LL * a[i] * b[i] % P; calculateNTT(a, len << , -); for (int i = ; i < len << ; ++i)a[i + ] += a[i] / , a[i] = a[i] % ; len <<= ; while (!a[len])--len; for (int i = len; ~i; --i)printf("%d", a[i]); puts("");
}

快速傅里叶变换FFT

模板 - 数学 - 快速傅里叶变换/快速数论变换(FFT/NTT)的更多相关文章

  1. 快速傅里叶变换 & 快速数论变换

    快速傅里叶变换 & 快速数论变换 [update 3.29.2017] 前言 2月10日初学,记得那时好像是正月十五放假那一天 当时写了手写版的笔记 过去近50天差不多忘光了,于是复习一下,具 ...

  2. 快速傅里叶变换(Fast-Fourier Transform,FFT)

    数学定义: (详细参考:https://www.baidu.com/link?url=oYAuG2o-pia_U3DlF5n_MJZyE5YKfaVRUHTTDbM1FwM_kDTjGCxKpw_Pb ...

  3. 「算法笔记」快速数论变换(NTT)

    一.简介 前置知识:多项式乘法与 FFT. FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差.快速数论变换(Number Theoretic Transfo ...

  4. [学习笔记&教程] 信号, 集合, 多项式, 以及各种卷积性变换 (FFT,NTT,FWT,FMT)

    目录 信号, 集合, 多项式, 以及卷积性变换 卷积 卷积性变换 傅里叶变换与信号 引入: 信号分析 变换的基础: 复数 傅里叶变换 离散傅里叶变换 FFT 与多项式 \(n\) 次单位复根 消去引理 ...

  5. 多项式乘法(FFT)模板 && 快速数论变换(NTT)

    具体步骤: 1.补0:在两个多项式最前面补0,得到两个 $2n$ 次多项式,设系数向量分别为 $v_1$ 和 $v_2$. 2.求值:用FFT计算 $f_1 = DFT(v_1)$ 和 $f_2=DF ...

  6. 快速傅里叶变换学习笔记(FFT)

    什么是FFT FFT是用来快速计算两个多项式相乘的一种算法. 如果我们暴力计算两个多项式相乘,复杂度必然是\(O(n^2)\)的,而FFT可以将复杂度降至\(O(nlogn)\) 如何FFT 要学习F ...

  7. 快速傅里叶变换(Fast Fourier Transform, FFT)和短时傅里叶变换(short-time Fourier transform,STFT )【资料整理】【自用】

    1. 官方形象展示FFT:https://www.bilibili.com/video/av19141078/?spm_id_from=333.788.b_636f6d6d656e74.6 2. 讲解 ...

  8. 快速数论变换(NTT)

    刚学完FFT,干脆把NTT也学了算了 (一)预备知识 关于原根,这里说得蛮详细的百度百科 为什么使用原根呢?为什么原根可以替代\(\omega_{n}\)呢?想知道为什么就看here NTT用到的各种 ...

  9. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

随机推荐

  1. MongoDB副本集的原理,搭建

    介绍: mongodb副本集即客户端连接到整个副本集,不关心具体哪一台机器是否挂掉.主服务器负责整个副本集的读写,副本集定期同步数据备份,一旦主节点挂掉,副本节点就会选举一个新的主服务器,这一切对于应 ...

  2. MYSQL时间戳的处理

    date为需要处理的参数(该参数是Unix 时间戳),可以是字段名,也可以直接是Unix 时间戳字符串 后面的 '%Y%m%d' 主要是将返回值格式化 例如: mysql>SELECT FROM ...

  3. RAC改动归档文件夹

    逐个节点改动 关闭全部节点,启动单节点(rac1)到mount状态 SQL> startup mount; 改动server參数配置 SQL> alter system set clust ...

  4. NYOJ 1067 Compress String(区间dp)

    Compress String 时间限制:2000 ms  |  内存限制:65535 KB 难度:3 描写叙述 One day,a beautiful girl ask LYH to help he ...

  5. Nova虚拟机迁移

    这里根据我的配置环境只讲述冷迁移(Migrate Instance)需要进行的计算节点配置而不包含热迁移(Live Migrate Instance),后者需要共享存储及Hypervisor的支持. ...

  6. quilt - 制作patch的工具

    quilt - 制作patch的工具 在尝试为openwrt做一个patch时,查到这个工具.openwrt官方已经有很详细的文档对步骤进行说明了. quilt并不是专为openwrt的开发工具.qu ...

  7. iOS 内购遇到的坑

    一.内购沙盒测试账号在支付成功后,再次购买相同 ID 的物品,会提示如下内容的弹窗.您以购买过此APP内购项目,此项目将免费恢复 原因: 当使用内购购买过商品后没有把这个交易事件关,所以当我们再次去购 ...

  8. appium 控件定位

    转自:http://www.2cto.com/kf/201410/340345.html AppiumDriver的各种findElement方法的尝试,尝试的目标应用是SDK自带的Notepad应用 ...

  9. peewee模块

    Peewee Python中数据库与ORM主要做这几件事: 数据库方面由程序员设计表关系,主要是1v1,1vN,NvN: ORM做数据类型映射,将数据库表示的char/int等类型映射成Python对 ...

  10. python day - 19 抽象类 接口类 多态 封装

    一. 抽象类接口类即制定一个规范 特点: 1.不可被实例化. 2.规范子类当中必须事先某个方法. 3.在python中有原生实现抽象类的方法,但没有原生实现接口类的方法. 例题:制定一个规范就是,子类 ...