题目描述

无向连通图G 有n 个点,n - 1 条边。点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 。图上两点( u , v ) 的距离定义为u 点到v 点的最短距离。对于图G 上的点对( u, v) ,若它们的距离为2 ,则它们之间会产生Wu×Wv 的联合权值。

请问图G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?

输入输出格式

输入格式:

输入文件名为link .in。

第一行包含1 个整数n 。

接下来n - 1 行,每行包含 2 个用空格隔开的正整数u 、v ,表示编号为 u 和编号为v 的点之间有边相连。

最后1 行,包含 n 个正整数,每两个正整数之间用一个空格隔开,其中第 i 个整数表示图G 上编号为i 的点的权值为W i 。

输出格式:

输出文件名为link .out 。

输出共1 行,包含2 个整数,之间用一个空格隔开,依次为图G 上联合权值的最大值

和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对10007 取余。

输入输出样例

输入样例#1: 复制

5
1 2
2 3
3 4
4 5
1 5 2 3 10
输出样例#1: 复制

20 74

说明

本例输入的图如上所示,距离为2 的有序点对有( 1,3) 、( 2,4) 、( 3,1) 、( 3,5) 、( 4,2) 、( 5,3) 。

其联合权值分别为2 、15、2 、20、15、20。其中最大的是20,总和为74。

【数据说明】

对于30% 的数据,1 < n≤ 100 ;

对于60% 的数据,1 < n≤ 2000;

对于100%的数据,1 < n≤ 200 , 000 ,0 < wi≤ 10, 000 。

dfs模拟权值只在祖孙,兄弟之间产生

#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn = ;
const int mod = ;
int n,a[maxn],head[maxn],num;
struct node{
int v,next;
}edge[maxn*];
void add_edge(int a,int b) {
edge[++num].v=b;edge[num].next=head[a];head[a]=num;
}
int max_ans,ans;
void dfs(int x,int fa,int gfa) {
int sum=,div=,fv=,sv=;
for(int i=head[x];i;i=edge[i].next) {
int v=edge[i].v;
if(v!=fa) {
sum=(sum+a[v])%mod;div=(div+a[v]*a[v]%mod)%mod;
if(a[v]>fv)sv=fv,fv=a[v];
else if(a[v]>sv)sv=a[v];
dfs(v,x,fa);
}
}
ans=(ans+(sum*sum%mod-div+mod)%mod+*a[x]*a[gfa]%mod)%mod;
max_ans=max(max_ans,max(fv*sv,a[x]*a[gfa]));
return;
}
int main() {
scanf("%d",&n);
for(int aa,b,i=;i<n;++i) {
scanf("%d%d",&aa,&b);add_edge(aa,b),add_edge(b,aa);
}
for(int i=;i<=n;i++) scanf("%d",a+i);
dfs(,,);
printf("%d %d\n",max_ans,ans);
return ;
}

luogu P1351 联合权值的更多相关文章

  1. [NOIp2014] luogu P1351 联合权值

    哎我博 4 了. 题目描述 无向连通图 GGG 有 nnn 个点,n−1n−1n−1 条边.点从 111 到 nnn 依次编号,编号为 iii 的点的权值为 WiW_iWi​,每条边的长度均为 111 ...

  2. Luogu P1351 联合权值 题解

    这是一个不错的树形结构的题,由于本蒟蒻不会推什么神奇的公式其实是懒得推...,所以很愉快的发现其实只需要两个点之间的关系为祖父和儿子.或者是兄弟即可. 然后问题就变得很简单了,只需要做一个正常的DFS ...

  3. 【luogu P1351 联合权值】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1351 做了些提高组的题,不得不说虽然NOIP考察的知识点虽然基本上都学过,但是做起题来还是需要动脑子的. 题 ...

  4. P1351 联合权值(树形dp)

    P1351 联合权值 想刷道水题还交了3次.....丢人 (1.没想到有两个点都是儿子的状况 2.到处乱%(大雾)) 先dfs一遍处理出父亲$fa[x]$ 蓝后再一遍dfs,搞搞就出来了. #incl ...

  5. 洛谷 P1351 联合权值 题解

    P1351 联合权值 题目描述 无向连通图 \(G\) 有 \(n\) 个点,\(n-1\) 条边.点从 \(1\) 到 \(n\) 依次编号,编号为 \(i\) 的点的权值为 \(W_i\)​,每条 ...

  6. 洛谷——P1351 联合权值

    https://www.luogu.org/problem/show?pid=1351 题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i , ...

  7. 『题解』洛谷P1351 联合权值

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 无向连通图\(\mathrm G\)有\(n\)个点,\(n - 1\)条边.点从 ...

  8. [NOIP2014] 提高组 洛谷P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  9. 洛谷 P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

随机推荐

  1. Bootstrap历练实例:表单控件状态(焦点)

    输入框焦点 当输入框 input 接收到 :focus 时,输入框的轮廓会被移除,同时应用 box-shadow. <!DOCTYPE html><html><head& ...

  2. Spring框架context的注解管理方法之二 使用注解注入基本类型和对象属性 注解annotation和配置文件混合使用(半注解)

    首先还是xml的配置文件 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=" ...

  3. [LUOGU] 1892 团伙

    题目描述 1920年的芝加哥,出现了一群强盗.如果两个强盗遇上了,那么他们要么是朋友,要么是敌人.而且有一点是肯定的,就是: 我朋友的朋友是我的朋友: 我敌人的敌人也是我的朋友. 两个强盗是同一团伙的 ...

  4. Mysql 5.7在Linux上部署及远程访问

    序言:最近要和伙伴一起组队,做.NET Core项目.所以自己就租了一个阿里云服务器,并且装了Linux和MySQL.这里面我的Linux是CentOs 7. 第一步 添加Mysql Yum库 这里面 ...

  5. 【git】不检查特定文件的更改情况

    .gitignore只能忽略那些原来没有被track的文件,如果某些文件已经被纳入了版本管理中,则修改.gitignore是无效的.正确的做法是在每个clone下来的仓库中手动设置不要检查特定文件的更 ...

  6. python插件,pycharm基本用法,markdown文本编写,jupyter notebook的基本操作汇总

    5.14自我总结 一.python插件插件相关技巧汇总 安装在cmd上运行 #比如安装 安装:wxpy模块(支持 Python 3.4-3.+ 以及 2.7 版本):pip3 install wxpy ...

  7. LCD驱动分析(三)时序分析

    参考:S3C2440 LCD驱动(FrameBuffer)实例开发<一>   S3C2440 LCD驱动(FrameBuffer)实例开发<二>

  8. AVL树总结

    定义:一棵AVL树或者是空树,或者是具有下列性质的二叉搜索树:它的左子树和右子树都是AVL树,且左右子树的高度之差的绝对值不超过1 AVL树失衡旋转总结: 假如以T为根的子树失衡.定义平衡因子为 H( ...

  9. [!] The ‘Pods-项目名XXX' target has frameworks with conflicting names:XXX.framework.

    在集成网易 即时通讯IM时报如下错误: [!] The ‘Pods-Yepu' target has frameworks with conflicting names: nimsdk.framewo ...

  10. Linux基础命令详解-2

    本篇详解的命令有以下30个 1.rmdir 功能:删除一个空目录   2.telnet 功能:使用telnet协议连接到主机的指定端口 3.vim 功能:编辑器之神 vim三种模式的功能及其转换   ...