Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) 题解
真心简单的一场比赛 就是坑比较多(自己太蠢)
A是一个水题 3分钟的时候过了
B也是一个比较简单的题 类似的套路见得多了 但是我当时可能比较困 想了一会才想出来 19分钟的时候过掉了
C同样很显然 性质不难发现 我在30分钟的时候通过了pretest 但是由于自己的愚蠢 忘记写了一句话 导致FST了。。。
D本来是一个简单的dp题 但是我一直没往dp上想 在网络流上刚了1h之后终于换了思路 在1:45的时候通过了他
然后就时间不多了 E都没看 就去hack 成功hack了2个之后比赛就结束了
题解
A
如果有两个同样的puppies就符合条件 因为我们可以用这两个把他变成别的颜色 然后就可以一个个把颜色都清除 直到最后剩下一种颜色为止
注意如果长度为1也就是只有1个字符也是可以的 要特判
B
我们可以发现如果可行,那么一定有一个质数满足条件
然后我们可以找到$a_1$和$b_1$的所有质因数,分别看他们是否满足条件即可
C
假如我们把一个串s分成 s1|s2
那么我们做完操作之后 串变成s1|s2
其中s表示s的倒序
那么我们如果把串写在环上 会发现操作之后整个环没有实质上的
比如串bwbwbwbbwbwb 我们在第4位截开 并操作一番
然后我们把第二个环倒置(s到t变成t到s)并且旋转4个位置
我们得到了原来的环
所以说明了操作不会改变环的实质
所以我们只要计算环上最长的"zebra"长度即可
把串复制一遍 然后扫一遍就可以得到答案
D
令$dp1[l][r]$表示从$l$到$r$这一段,以$l-1$为根,能否做成bst
$dp2[l][r]$表示从$l$到$r$这一段,以$r+1$为根,能否做成bst
那么我们这样转移:
$$dp1[l][r]=Or_{k \in (l,r), gcd(a_{l-1},a_k) \gt 1} {dp2[l][k-1] \& dp1[k+1][r]}$$
$$dp2[l][r]=Or_{k \in (l,r), gcd(a_{r+1},a_k) \gt 1} {dp2[l][k-1] \& dp1[k+1][r]}$$
复杂度$O(n^3)$
E
想法题
基本的套路是我们找到一个basic state,然后把开始状态和结束状态都转移到basic state
有众多方法 我只讲一个
就是我们把所有designated places都放到第一行上
这是很简单的 我们从上往下,每一行从左往右遍历,然后按照遍历到的顺序把这些格子放到第一行上去
就是第一个遍历到的放到(1,1),第二个遍历到的放到(1,2)……
因为在遍历到一个格子的时候,他前面的格子都被放好了 所以我们可以很轻易的把他放到应该放的位置上
现在我们变成了一个新的问题:两个1*k的序列,我们要通过一些操作变得相同
这也是很简单的
如果总行数只有两行 那么可以手算出来
当总行数超过3行的时候
我们从第一个格子开始 加入他现在在(1,i)要移动到(1,j)
我们把它通过下列操作移动:(1,i),(2,i),……,(2,j),(3,j)
然后我们再把所有第三行上的格子移到第一行
由于移动过程中第二行永远是空或者只有一个格子在移动,所以可行
总操作数:
第一步大概在$n^2$次操作,第二步大概在$n^2$次操作,第三步和第一步一样
所以总操作数大概为$3n^2$
F
G
我们给一个有k个子节点的连通块赋值为$2^k-1$
考察合并操作
我们发现 合并操作前 权值为$2^a-1+2^b-1$
如果把b放到a下面 权值变为$2^{a+1}-1$
如果把a放到b下面 权值变为$2^{b+1}-1$
那么期望权值就是$\frac {2^{a+1}-1} {2} + \frac {2^{b+1}-1} {2}=2^a+2^b-1$
所以总权值+1
那么我们只要算出开始权值和结束权值(就是$2^{n-1}-1$) 他们的差就是答案
Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) 题解的更多相关文章
- D. Recovering BST Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final)
http://codeforces.com/contest/1025/problem/D 树 dp 优化 f[x][y][0]=f[x][z][1] & f[z+1][y][0] ( gcd( ...
- Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) -B C(GCD,最长连续交替序列)
B. Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input ...
- Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) B. Weakened Common Divis
题目链接 让你找一个数,使得这个数,可以被每个二元组的两个数中的一个数整除. 先将第一个二元组的两个数质因数分解一下,分解的质数加入set中,然后,对剩下的n-1个二元组进行遍历,每次遍历到的二元组对 ...
- Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final)
A : A. Doggo Recoloring time limit per test 1 second memory limit per test 256 megabytes input stand ...
- Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final)-C. Plasticine zebra
问了学长,感觉还是很迷啊,不过懂了个大概,这个翻转操作,实质不就是在序列后面加上前面部分比如 bw | wwbwwbw 操作过后 wbwbwwbww 而 bw | wwbwwbwbw 这样我们就知道 ...
- 【Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) C】
[链接] 我是链接,点我呀:) [题意] 给你一个字符串s. 让你在其中的某一些位置进行操作.. 把[1..i]和[i+1..n]翻转. 使得里面01交替出现的那种子串的长度最长. [题解] 可以用a ...
- 【Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) A】 Doggo Recoloring
[链接] 我是链接,点我呀:) [题意] 你可以把出现次数大于1的颜色换成其他颜色. 问你最后能不能全都变成同一种颜色 [题解] 判断一下有没有出现次数大于1的就好. 有的话.显然可以一直用它变颜色. ...
- 【Codeforces Round #505 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) B】Weakened Common Divisor
[链接] 我是链接,点我呀:) [题意] 给你n个数对(ai,bi). 让你求一个大于1的数字x 使得对于任意的i x|a[i] 或者 x|b[i] [题解] 求出第一个数对的两个数他们有哪些质因子. ...
- E - Down or Right Codeforces Round #504 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final)
http://codeforces.com/contest/1023/problem/E 交互题 #include <cstdio> #include <cstdlib> #i ...
随机推荐
- 项目Beta冲刺(团队2/7)
项目Beta冲刺(团队2/7) 团队名称: 云打印 作业要求: 项目Beta冲刺(团队) 作业目标: 完成项目Beta版本 团队队员 队员学号 队员姓名 个人博客地址 备注 221600412 陈宇 ...
- mac上pydev
转自:http://m.blog.csdn.net/blog/yangfu132/23689823 本来网上有教程,但是往往又一些不周到的地方,让人走了不少弯路. 使用 PyDev 进行调试 第一步: ...
- Hibernate_14_数据连接池的使用
在主配置文件Hibernate.cfg.xml中设置: <!-- 设置默认的事务隔离级别: 隔离级别 相应的整数表示 READ UNCOMMITED 1 READ COMMITED 2 REPE ...
- log Configuration
Log4j – Configuring Log4j 2 - Apache Log4j 2 https://logging.apache.org/log4j/2.x/manual/configurati ...
- Maven 用法
scope标签 provided:如果存在编译需要而发布不需要的jar包,使用provided属性值
- JSON与localStorage的爱恨情仇
在使用localStorage时,我们会给一个key存取一个value,这个value可以是一个普通的字符串,也可以是一个对象,如果是一个字符串,我们就需要通过JSON.stringify来转化为JS ...
- BootLoader与Linux内核的参数传递【转】
本文转载自:http://blog.sina.com.cn/s/blog_476d8cf30100rttx.html 在嵌入式系统中,BootLoader 是用来初始化硬件,加载内核,传递参数.因为嵌 ...
- bzoj5406: Gift
全程膜拜 码得都要一样了.. 对于这种数列置换的可以理解成多个环,而对于一个大小为d的环把顺序弄对要做d-1次 总起来就是n-环数的次数 加上暴力30pt到手啦 假如题目没有限制,那就是第一类斯特林数 ...
- WAS:服务器停电后,重启DMGR,控制台访问不了
1. 今天有现场WAS服务器停电,重启DMGR后,控制台网页打不开: 后来得知,防火墙可能有问题.(虽然之前该机器上防火墙是关着的,但掉电后,防火墙会重启规则) 关掉防火墙后,问题解决. 2. ...
- c语言中为什么左移不分符号数无符号数,而右移分呢??
因为在C语言标准中,只规定了无符号数的移位操作是采用逻辑移位(即左移.右移都是使用的逻辑左移和逻辑右移).而对于有符号数,其左移操作还是逻辑左移,但右移操作是采用逻辑右移还是算术右移就取决于机器了!( ...