题意:图上n个点,使每个点都与俩个中转点的其中一个相连(二选一,典型2-sat),并使任意两点最大

距离最小(最大最小,2分答案),有些点相互hata,不能选同一个中转点,有些点相互LOVE,必需选相同中转点

(显然是2sat条件)。

关键:每次二分枚举limit,按limit建图,需要注意的是每条逻辑语句对应两条边(相互对称,逻辑上互为假言易位),

如:必需连通一个点,逻辑语句俩条:a->b,b->a,对应各自假言易位式,4条边。

相信二sat不再是问题了。

#include<iostream>//1200ms/2000ms 1A
#include<queue>
#include<stack>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
using namespace std;
struct point
{
int x,y;
};
vector<vector<int> >e(1050);
int n,a,b;point s1,s2; int maxdis=4000001;
point po[505]; point hate[1005]; point love[1005];
int absint(int x)
{
if(x<0)return -x;
return x;
}
int dis(point aa,point bb) //距离
{
return absint(aa.x-bb.x)+absint(aa.y-bb.y);
}
void build(int limit) //每次二分后建图
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++) //注意不要加ELSE
{
if(i==j)continue;
if((dis(po[i],s1)+dis(po[j],s2)+dis(s1,s2))>limit) //无法到达了,
{
e[2*i-1].push_back(2*j-1);
e[2*j-2].push_back(2*i-2);
}
if((dis(po[i],s1)+dis(po[j],s1))>limit)
{
e[2*i-1].push_back(2*j-2);
e[2*j-1].push_back(2*i-2);
}
if((dis(po[i],s2)+dis(po[j],s2))>limit)
{
e[2*i-2].push_back(2*j-1);
e[2*j-2].push_back(2*i-1);
}
}
for(int i=0;i<a;i++) //相互憎恨的
{
e[hate[i].x*2-1].push_back(hate[i].y*2-2);
e[hate[i].y*2-1].push_back(hate[i].x*2-2);
e[hate[i].x*2-2].push_back(hate[i].y*2-1);
e[hate[i].y*2-2].push_back(hate[i].x*2-1);
}
for(int i=0;i<b;i++) //相互喜爱的
{
e[love[i].x*2-1].push_back(love[i].y*2-1);
e[love[i].y*2-2].push_back(love[i].x*2-2);
e[love[i].y*2-1].push_back(love[i].x*2-1);
e[love[i].x*2-2].push_back(love[i].y*2-2);
}
}
int vis[1050];int dfn[1050];int low[1050];bool instack[1050];int block[1050];
int times=0; stack<int>s; int num=0;
void tarjan(int u) //下边是2sat缩点判断可行
{
dfn[u]=low[u]=++times;
instack[u]=1;
s.push(u);
int len=e[u].size();
for(int i=0;i<len;i++)
{
int v=e[u][i];
if(!vis[v])
{
vis[v]=1;
tarjan(v);
if(low[u]>low[v])low[u]=low[v];
}
else if(instack[v]&&dfn[v]<low[u])
low[u]=dfn[v];
}
if(dfn[u]==low[u])
{
num++;
int cur;
do{
cur=s.top();s.pop();
instack[cur]=0;
block[cur]=num;
}while(cur!=u);
}
}
bool check(int limit)
{
for(int i=0;i<=2*n-1;i++)
{
e[i].clear();
block[i]=vis[i]=dfn[i]=low[i]=instack[i]=0;
}
num=times=0;
build(limit);
for(int i=0;i<=2*n-1;i++)
if(!vis[i])
{
vis[i]=1;
tarjan(i);
}
for(int i=0;i<=2*n-1;i+=2)
if(block[i]==block[i+1])
return 0;
return 1;
}
int main()
{
scanf("%d%d%d",&n,&a,&b);scanf("%d%d%d%d",&s1.x,&s1.y,&s2.x,&s2.y);
for(int i=1;i<=n;i++)
scanf("%d%d",&po[i].x,&po[i].y);
for(int i=0;i<a;i++)
scanf("%d%d",&hate[i].x,&hate[i].y);
for(int i=0;i<b;i++)
scanf("%d%d",&love[i].x,&love[i].y);
int right=maxdis,left=0,mid;
if(!check(maxdis)){printf("-1\n");return 0;}
while(right>left+1)
{
mid=(right+left)/2;
if(check(mid))
{
right=mid;
}
else
left=mid;
}
if(check(right-1))printf("%d\n",right-1);
else printf("%d\n",right);
return 0;
}

POJ 2749 2SAT判定+二分的更多相关文章

  1. poj 2749 2-SAT问题

    思路:首先将hate和friend建边求其次2-SAT问题,判断是否能有解,没解就输出-1,否则用二分枚举最大的长度,将两个barn的距离小于mid的看做是矛盾,然后建边,求2-SAT问题.找出最优解 ...

  2. poj 2723 二分+2-sat判定

    题意:给出n对钥匙,每对钥匙只能选其中一个,在给出每层门需要的两个钥匙,只要一个钥匙就能开门,问最多能到哪层. 思路:了解了2-SAT判定的问题之后主要就是建图的问题了,这里建图就是对于2*n个钥匙, ...

  3. HDU 1815, POJ 2749 Building roads(2-sat)

    HDU 1815, POJ 2749 Building roads pid=1815" target="_blank" style="">题目链 ...

  4. POJ 3111 K Best ( 二分 )

    题意 : 给出 N 个物品的价值和重量,然后要求选出 K 个物品使得选出来物品的单位重量价值最大,最后输出被选物品的编号. 分析 :  很容易去想先算出每个物品的单位价值然后升序排序取前 K 个,但是 ...

  5. POJ 3273 Monthly Expense二分查找[最小化最大值问题]

    POJ 3273 Monthly Expense二分查找(最大值最小化问题) 题目:Monthly Expense Description Farmer John is an astounding a ...

  6. Java实现 POJ 2749 分解因数(计蒜客)

    POJ 2749 分解因数(计蒜客) Description 给出一个正整数a,要求分解成若干个正整数的乘积,即a = a1 * a2 * a3 * - * an,并且1 < a1 <= ...

  7. poj 2749 Building roads (二分+拆点+2-sat)

    Building roads Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6229   Accepted: 2093 De ...

  8. POJ 2749 Building roads 2-sat+二分答案

    把爱恨和最大距离视为限制条件,可以知道,最大距离和限制条件多少具有单调性 所以可以二分最大距离,加边+check #include<cstdio> #include<algorith ...

  9. ZOJ 3717 二分+2-sat判定。

    好久没有2-sat了,此题当复习之用,二分求最大值+2-sat判断可行,此题主要跪于题意:The results should be rounded to three decimal places. ...

随机推荐

  1. 在DLL中创建窗口时一个值得注意的地方 — UnregisterClass

    背景描述: 今天要测试一份注入代码,拿以前写的创建窗口的DLL来做测试. 第一次注入时一切正常,窗口被成功创建并显示,但在第二次加载时窗口没有显示出来. 经过研究发现在第二次加载DLL时Registe ...

  2. QT +坐标系统 + 自定义控件 + 对象树的验证(自动进行析构)_内存回收机制

    通过创建一个新的按钮类,来进行析构函数的验证,即对象树概念的验证.当程序结束的时候会自动的调用析构函数, 验证思路: 要验证按钮会不会自动的析构,(即在QPushButton类里面的析构函数添加qDe ...

  3. JavaEE-01 JSP动态网页基础

    学习要点 B/S架构的基本概念 Web项目的创建和运行 JSP页面元素 MyEclipse创建和运行Web项目 Web程序调试 Web简史 web前端技术演进三阶段 WEB 1.0:信息广播. WEB ...

  4. NETCORE使用DB First

    1)引用 (1)Install-Package Microsoft.EntityFrameworkCore (2)Install-Package Microsoft.EntityFrameworkCo ...

  5. 错误的语法:"create view必须是批处理中仅有的语句"

    编写脚本提示: 错误的语法:"create view必须是批处理中仅有的语句" FROM sys.views WHERE name = 'v_CS_UserRoleNames' ) ...

  6. h lib dll文件相关部分

    参考:https://www.cnblogs.com/azbane/p/7364060.html 只对其中自己用得到的重点做了个笔记. 1..h头文件是编译时必须的,lib是链接时需要的,dll是运行 ...

  7. 使用SimpleDateFormat 将毫秒转换成时分秒 格式:HH:mm:ss

    public static String dateFormatFromMilliSecond(long seconds) {        //初始化format格式    SimpleDateFor ...

  8. bash实现自动补全

    yum install -y bash-completion source /usr/share/bash-completion/bash_completion 执行后yum拥有选项自动补全功能 对于 ...

  9. c++_最大公共子串

    标题:最大公共子串 最大公共子串长度问题就是:求两个串的所有子串中能够匹配上的最大长度是多少. 比如:"abcdkkk" 和 "baabcdadabc",可以找 ...

  10. tornado框架基础05-模板继承、UImodul和UImethods

    01 模板继承 父模板​ <html lang="en"> <head>     <meta charset="UTF-8"> ...