CF1179D Fedor Runs for President [DP,斜率优化]
思路
考虑把连的那两个点中间的链提出来,那么就会变成一条链,链上的每个点挂着一棵子树的形式。
设那些子树的大小为\(S_1,S_2,\cdots\),那么新加的简单路径个数就是
\]
很容易理解:任意两个点,只要不在同一棵子树内,就会多一条路径。
那么就可以树形DP:设\(dp_x\)表示从\(x\)向下连的一条链,\(\sum S^2\)的最小值,也很容易转移。
但是统计答案,也就是把两条链连在一起的时候,怎么办呢?
考虑合并\(x,y\)的链,他们的子树大小为\(size_x,size_y\),那么有
\]
把括号拆开之后容易看出是一个斜率优化的形式,乱搞即可。
那么问题来了:这种题是怎么搞到难度2600的?
代码
#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
using namespace std;
#define pil pair<int,ll>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define templ template<typename T>
#define sz 505050
typedef long long ll;
typedef double db;
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
templ inline void read(T& t)
{
t=0;char f=0,ch=getchar();double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
t=(f?-t:t);
}
template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
char __sr[1<<21],__z[20];int __C=-1,__zz=0;
inline void Ot(){fwrite(__sr,1,__C+1,stdout),__C=-1;}
inline void print(register int x)
{
if(__C>1<<20)Ot();if(x<0)__sr[++__C]='-',x=-x;
while(__z[++__zz]=x%10+48,x/=10);
while(__sr[++__C]=__z[__zz],--__zz);__sr[++__C]='\n';
}
void file()
{
#ifdef NTFOrz
freopen("a.in","r",stdin);
#endif
}
inline void chktime()
{
#ifndef ONLINE_JUDGE
cout<<(clock()-t)/1000.0<<'\n';
#endif
}
#ifdef mod
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
ll inv(ll x){return ksm(x,mod-2);}
#else
ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
#endif
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std;
int n;
struct hh{int t,nxt;}edge[sz<<1];
int head[sz],ecnt;
void make_edge(int f,int t)
{
edge[++ecnt]=(hh){t,head[f]};
head[f]=ecnt;
edge[++ecnt]=(hh){f,head[t]};
head[t]=ecnt;
}
ll dp[sz];
int size[sz];
ll ans=1e18;
#define v edge[i].t
#define Sqr(x) (1ll*(x)*(x))
inline db K(pil a,pil b){return 1.0*(b.sec-a.sec)/(b.fir-a.fir);}
void dfs(int x,int fa)
{
vector<pil>V;size[x]=1;
go(x) if (v!=fa)
{
dfs(v,x);
V.push_back(MP(size[v],dp[v]-2ll*n*size[v]+Sqr(size[v])));
size[x]+=size[v];
}
dp[x]=Sqr(size[x]);
go(x) if (v!=fa) chkmin(dp[x],dp[v]+Sqr(size[x]-size[v]));
if (!V.size()) return;
sort(V.begin(),V.end());
vector<pil>con;con.push_back(V[0]);int top=0;
rep(i,1,(int)V.size()-1)
{
while (top&&K(con[top],con[top-1])>-2*V[i].fir) --top,con.pop_back();
chkmin(ans,con[top].sec+V[i].sec+2ll*con[top].fir*V[i].fir+Sqr(n));
if (V[i].fir==V[i-1].fir) continue;
while (top&&K(con[top],con[top-1])>=K(con[top-1],V[i])) --top,con.pop_back();
con.push_back(V[i]);++top;
}
}
int main()
{
file();
int x,y;
read(n);
rep(i,1,n-1) read(x,y),make_edge(x,y);
dfs(1,0);chkmin(ans,dp[1]);
ll Ans=(Sqr(n)-ans)/2+1ll*n*(n-1)/2;
cout<<Ans;
return 0;
}
其他解法
参见 XZZ大佬的博客: https://www.cnblogs.com/xzz_233/p/11070827.html
并没有看懂他干了什么,可能有一些玄妙的结论……
CF1179D Fedor Runs for President [DP,斜率优化]的更多相关文章
- Codeforces 1179 D - Fedor Runs for President
D - Fedor Runs for President 思路: 推出斜率优化公式后,会发现最优点只可能来自凸斜率中的第一个元素和最后一个元素, 这两个元素不用维护凸斜率也能知道,就是第一个和上一个元 ...
- 【BZOJ-4518】征途 DP + 斜率优化
4518: [Sdoi2016]征途 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 230 Solved: 156[Submit][Status][ ...
- 【BZOJ-3437】小P的牧场 DP + 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 705 Solved: 404[Submit][Status][Discuss ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
- 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...
- BZOJ 1096: [ZJOI2007]仓库建设(DP+斜率优化)
[ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在 ...
- 学渣乱搞系列之dp斜率优化
学渣乱搞系列之dp斜率优化 By 狂徒归来 貌似dp的斜率优化一直很难搞啊,尤其是像我这种数学很挫的学渣,压根不懂什么凸包,什么上凸下凸的,哎...说多了都是泪,跟wdd讨论了下,得出一些结论.本文很 ...
- DP斜率优化总结
目录 DP斜率优化总结 任务安排1 任务计划2 任务安排3 百日旅行 DP斜率优化总结 任务安排1 首先引入一道题,先\(O(N^2)\)做法:分别预处理出\(T_i,C_i\)前缀和\(t[i],c ...
- HDU 3507 [Print Article]DP斜率优化
题目大意 给定一个长度为\(n(n \leqslant 500000)\)的数列,将其分割为连续的若干份,使得 $ \sum ((\sum_{i=j}^kC_i) +M) $ 最小.其中\(C_i\) ...
随机推荐
- pdf解锁和脱水印
解锁工具下载http://pan.baidu.com/s/1o8FcKFC 使用方法: 第一步: 打开加密pdf文件保存即可 参考:http://www.epinv.com/post/157.html
- 注册CSDN账号的尴尬
因为新浪博客这里代码显示不大好用,打算把关于编程和应用开发的东西改到那里去写,可是点击注册.... 竟然要输入手机号,无法跳过.... 要知道,楼主现在可是在国外,压根没有可用于注册的手机号啊.. ...
- Codeforces Round #324 (Div. 2)C. Marina and Vasya
A的万般无奈...后来跑了大牛的这份代码发现, 题意是求一个序列与给定的两个序列有t个不同. 只要保证...对应位置就行了.. 所以处理起来非常方便.............. 可是没有感觉是对应位置 ...
- bzoj 3365: [Usaco2004 Feb]Distance Statistics 路程统计【容斥原理+点分治】
统计在一个root下的两个子树,每个子树都和前面的运算一下再加进去对于这种需要排序的运算很麻烦,所以考虑先不去同子树内点对的算出合法点对个数,然后减去每一棵子树内的合法点对(它们实际上是不合法的,相当 ...
- spring boot eureka client
eureka client @EnableDiscoveryClient @SpringBootApplication public class DemoApplication { public st ...
- Java | 技术应用 | 利用Jsoup处理页面
根据微信公众号的推文链接地址,对文章内容进行爬取,利用jsoup解析文章源代码,加上结合xpth提取文文章信息, 利用正则表达式读取文章发表时间. Jsoup <!-- jsoup HTML p ...
- Python之单元测试——HTMLTestRunner
前置条件:把HTMLTestRunner.py文件拷贝到External Libraries—>site-packages里面 import unittestimport HTMLTestRun ...
- Android利用tcpdump抓包,用wireshark分析包。
1.前言 主要介绍在android手机上如何利用tcpdump抓包,用wireshark分析包. android tcpdump官网: http://www.androidtcpdump.com/ t ...
- R 关于全局变量
不得不吐槽了 写了这么多,竟然今天才发现R的全局变量在函数名空间里是不能赋值的,我去!!! 就是说在函数里面,全局变量名是可读的,但不可写(写的时候 又会创建新的 自由变量了)
- RabbitMQ八:交换机类型Exchange Types--Topic介绍
前言 上一章节,我们说了两个类型,本章我们说一下其三:Topic Exchange Topic Exchange Topic Exchange – 将路由键和某模式进行匹配.此时队列需要绑定要一个模 ...