HDOJ How many ways?? 2157【矩阵高速幂】
How many ways?
?
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2046 Accepted Submission(s): 758
?
你可决定了葱头一天能看多少校花哦
接下来的T行, 每行有三个整数 A, B, k, 表示问你从A 点到 B点恰好经过k个点的方案数 (k < 20), 能够走反复边。假设不存在这种走法, 则输出0
当n, m都为0的时候输入结束
4 4
0 1
0 2
1 3
2 3
2
0 3 2
0 3 3
3 6
0 1
1 0
0 2
2 0
1 2
2 1
2
1 2 1
0 1 3
0 0
2
0
1
3
pid=2154" style="color:rgb(26,92,200); text-decoration:none">2154
pid=2158" style="color:rgb(26,92,200); text-decoration:none">2158
2156pid=2153" style="color:rgb(26,92,200); text-decoration:none">2153
中文题~
解题思路:经典矩阵算法。把给定的图转为邻接矩阵,即A(i,j)=1当且仅当存在一条边i->j。令C=A*A,那么C(i,j)=ΣA(i,k)*A(k,j),实际上就等于从点i到点j恰好经过2条边的路径数(枚举k为中转点)。类似地,C*A的第i行第j列就表示从i到j经过3条边的路径数。同理,假设要求经过k步的路径数,我们仅仅须要二分求出A^k就可以。
第一道矩阵高速幂。写的比較乱。并且这样的写法时间复杂度较高,没有优化。只是比較easy看懂。
矩阵高速幂预备知识:
①矩阵相乘规则:
矩阵与矩阵相乘 第一个矩阵的列数必须等于第二个矩阵的行数 假如第一个是m*n的矩阵 第二个是n*p的矩阵 则结果就是m*p的矩阵 且得出来的矩阵中元素具有下面特点:
第一行第一列元素为第一个矩阵的第一行的每一个元素和第二个矩阵的第一列的每一个元素乘积的和 以此类推 第i行第j列的元素就是第一个矩阵的第i行的每一个元素与第二个矩阵第j列的每一个元素的乘积的和。
②单位矩阵:
n*n的矩阵 mat ( i , i )=1; 不论什么一个矩阵乘以单位矩阵就是它本身 n*单位矩阵=n, 能够把单位矩阵等价为整数1.
③高速幂:
这里矩阵高速幂等价于整数的高速幂,这里不再具体讲述
上代码:
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <algorithm> int s[25][25];
int b[25][25];
int n,m;
int a[25][25]; void Mat(int x[25][25],int y[25][25],int modn)
{
int c[25][25];
memset(c,0,sizeof(c)); //记得初始化
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
for(int k=0;k<n;k++)
c[i][j]=(c[i][j]+x[i][k]*y[k][j]%modn)%modn;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
x[i][j]=c[i][j];
} int Matrix(int begin,int end,int k)
{
for(int i=0;i<n;i++){ //初始化一个单位矩阵
for(int j=0;j<n;j++){
a[i][j]=(i==j);
}
}
for(int i=0;i<n;i++){ //记得用s保存再赋给b,不然b值变了之后结果就不正确了
for(int j=0;j<n;j++){
b[i][j]=s[i][j];
}
}
while(k){
if(k&1)Mat(a,b,1000);
Mat(b,b,1000);
k>>=1;
}
return a[begin][end];
} int main()
{
while(scanf("%d%d",&n,&m),n!=0||m!=0){
int S,G;
memset(b,0,sizeof(b));
memset(s,0,sizeof(s));
for(int i=0;i<m;i++){
scanf("%d%d",&S,&G);
s[S][G]=1;
}
int T;
scanf("%d",&T);
int B,E,k;
while(T--){
scanf("%d%d%d",&B,&E,&k);
int res=Matrix(B,E,k);
printf("%d\n",res);
}
}
return 0;
}
HDOJ How many ways?? 2157【矩阵高速幂】的更多相关文章
- HDOJ 4686 Arc of Dream 矩阵高速幂
矩阵高速幂: 依据关系够建矩阵 , 高速幂解决. Arc of Dream Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/ ...
- HDOJ 5411 CRB and Puzzle 矩阵高速幂
直接构造矩阵,最上面一行加一排1.高速幂计算矩阵的m次方,统计第一行的和 CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others) Memory ...
- HDOJ 4549 M斐波那契数列 费马小定理+矩阵高速幂
MF( i ) = a ^ fib( i-1 ) * b ^ fib ( i ) ( i>=3) mod 1000000007 是质数 , 依据费马小定理 a^phi( p ) = 1 ( ...
- UVA 11551 - Experienced Endeavour(矩阵高速幂)
UVA 11551 - Experienced Endeavour 题目链接 题意:给定一列数,每一个数相应一个变换.变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 思路:矩阵高速幂,要 ...
- UVA10518 - How Many Calls?(矩阵高速幂)
UVA10518 - How Many Calls?(矩阵高速幂) 题目链接 题目大意:给你fibonacci数列怎么求的.然后问你求f(n) = f(n - 1) + f(n - 2)须要多少次调用 ...
- HDU2842-Chinese Rings(递推+矩阵高速幂)
pid=2842">题目链接 题意:求出最少步骤解出九连环. 取出第k个的条件是,k-2个已被取出,k-1个仍在支架上. 思路:想必九连环都玩过吧,事实上最少步骤就是从最后一个环開始. ...
- HDU2276 - Kiki & Little Kiki 2(矩阵高速幂)
pid=2276">题目链接 题意:有n盏灯.编号从1到n.他们绕成一圈,也就是说.1号灯的左边是n号灯.假设在第t秒的时候,某盏灯左边的灯是亮着的,那么就在第t+1秒的时候改变这盏灯 ...
- uva 10655 - Contemplation! Algebra(矩阵高速幂)
题目连接:uva 10655 - Contemplation! Algebra 题目大意:输入非负整数,p.q,n,求an+bn的值,当中a和b满足a+b=p,ab=q,注意a和b不一定是实数. 解题 ...
- hdu 3221 Brute-force Algorithm(高速幂取模,矩阵高速幂求fib)
http://acm.hdu.edu.cn/showproblem.php?pid=3221 一晚上搞出来这么一道题..Mark. 给出这么一个程序.问funny函数调用了多少次. 我们定义数组为所求 ...
随机推荐
- POJ:3461-Oulipo(KMP模板题)
原题传送:http://poj.org/problem?id=3461 Oulipo Time Limit: 1000MS Memory Limit: 65536K Description The F ...
- saltstack管理八之常用执行模块
所有执行模块: http://docs.saltstack.cn/zh_CN/latest/ref/states/all/index.html 常用模块:cmd, cron, file, mount, ...
- 纯干货!live2d动画制作简述以及踩坑
本文来自网易云社区,转载务必请注明出处. 1. 概述 live2d是由日本Cybernoids公司开发,通过扭曲像素位置营造伪3d空间感的二维动画软件.官网下载安装包直接安装可以得到两种软件,分别是C ...
- [转]pickle python数据存储
python的pickle模块实现了基本的数据序列和反序列化.通过pickle模块的序列化操作我们能够将程序中运行的对象信息保存到文件中去,永久存储:通过pickle模块的反序列化操作,我们能够从文件 ...
- SPOJ DIVSUM - Divisor Summation
DIVSUM - Divisor Summation #number-theory Given a natural number n (1 <= n <= 500000), please ...
- Leetcode 363.矩形区域不超过k的最大数值和
矩形区域不超过k的最大数值和 给定一个非空二维矩阵 matrix 和一个整数 k,找到这个矩阵内部不大于 k 的最大矩形和. 示例: 输入: matrix = [[1,0,1],[0,-2,3]], ...
- 【UML】概述以及面向对象技术总结
导读:结束了软工文档后,就开始了UML的学习,不管学习什么,都要先从整体上去把握,然后再从细节上去分析理解.在视频的开头,就对UML进行了概述.然后接着讲了面向对象技术,用例图,类图和包图等.看着软工 ...
- Python之FTP传输
访问FTP,无非两件事情:upload和download,最近在项目中需要从ftp下载大量文件,然后我就试着去实验自己的ftp操作类,如下(PS:此段有问题,别复制使用,可以参考去试验自己的ftp类! ...
- [luoguP2331] [SCOI2005]最大子矩阵(DP)
传送门 orz不会做... 一个好理解的做法(n^3*k): 分n=1和n=2两种情况考虑. n=1时,预处理出前缀和sum[]. 设f[i][j]为到达第i格,已经放了j个子矩阵的最大和, 那么每次 ...
- Mato的文件管理(bzoj 3289)
Description Mato同学从各路神犇以各种方式(你们懂的)收集了许多资料,这些资料一共有n份,每份有一个大小和一个编号.为了防止他人偷拷,这些资料都是加密过的,只能用Mato自己写的程序才能 ...