第一问:因为每个点只能经过一次,所以拆点限制流量,建(i,i',1,val[i]),然后s向第一行建(s,i,1,0),表示每个点只能出发一次,然后最后一行连向汇点(i',t,1,0),跑最大费用最大流

第二问:没有点经过次数的限制所以不用拆点,s向第一行建(s,i,1,0),然后最后一行连向汇点(i,t,inf,val[i])(这里注意!!连向t的边表示的是选最后一排的点,然后点选的次数不受限所以这里流量为inf!在这里WA了一次),1到n-1行然后每个点向它能到达的两个点连(i,j,1,val[i]),这里表示的是路径,而路径有次数限制,所以流量为1。跑最大费用最大流

第三问:同上,只是没了边的限制所以1到n-1行然后每个点向它能到达的两个点连(i,j,inf,val[i])。跑最大费用最大流

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int N=1000005,inf=1e9;
int n,m,h[N],cnt=1,dis[N],fr[N],id[55][55],tot,a[25][25],ans,ans1,ans2,ans3,s,t;
bool v[N];
struct qwe
{
int ne,no,to,va,c;
}e[N<<2];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w,int c)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].no=u;
e[cnt].to=v;
e[cnt].va=w;
e[cnt].c=c;
h[u]=cnt;
}
void ins(int u,int v,int w,int c)
{//cout<<u<<" "<<v<<" "<<w<<endl;
add(u,v,w,c);
add(v,u,0,-c);
}
bool spfa()
{
queue<int>q;
for(int i=s;i<=t;i++)
dis[i]=-inf;
dis[s]=0;
v[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
v[u]=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&dis[e[i].to]<dis[u]+e[i].c)
{
dis[e[i].to]=dis[u]+e[i].c;
fr[e[i].to]=i;
if(!v[e[i].to])
{
v[e[i].to]=1;
q.push(e[i].to);
}
}
}
return dis[t]!=-inf;
}
void mcf()
{//cout<<"OK"<<endl;
int x=inf;
for(int i=fr[t];i;i=fr[e[i].no])
x=min(x,e[i].va);
for(int i=fr[t];i;i=fr[e[i].no])
{
e[i].va-=x;
e[i^1].va+=x;
ans+=x*e[i].c;
}
}
int fyl()
{
ans=0;
while(spfa())
mcf();
return ans;
}
int main()
{
m=read(),n=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m+i-1;j++)
{
a[i][j]=read();
id[i][j]=++tot;
}//cout<<"ok"<<endl;
s=0,t=tot*2+1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m+i-1;j++)
ins(id[i][j],id[i][j]+tot,1,a[i][j]);
for(int i=1;i<=m;i++)
ins(s,id[1][i],1,0);
for(int i=1;i<=m+n-1;i++)
ins(id[n][i]+tot,t,1,0);
for(int i=1;i<n;i++)
for(int j=1;j<=m+i-1;j++)
{
ins(id[i][j]+tot,id[i+1][j],1,0);
ins(id[i][j]+tot,id[i+1][j+1],1,0);
}
ans1=fyl();
memset(h,0,sizeof(h));
cnt=1;s=0,t=tot+1;
for(int i=1;i<=m;i++)
ins(s,id[1][i],1,0);
for(int i=1;i<=m+n-1;i++)
ins(id[n][i],t,inf,a[n][i]);
for(int i=1;i<n;i++)
for(int j=1;j<=m+i-1;j++)
{
ins(id[i][j],id[i+1][j],1,a[i][j]);
ins(id[i][j],id[i+1][j+1],1,a[i][j]);
}
ans2=fyl();
memset(h,0,sizeof(h));
cnt=1;s=0,t=tot+1;
for(int i=1;i<=m;i++)
ins(s,id[1][i],1,0);
for(int i=1;i<=m+n-1;i++)
ins(id[n][i],t,inf,a[n][i]);
for(int i=1;i<n;i++)
for(int j=1;j<=m+i-1;j++)
{
ins(id[i][j],id[i+1][j],inf,a[i][j]);
ins(id[i][j],id[i+1][j+1],inf,a[i][j]);
}
ans3=fyl();
printf("%d\n%d\n%d\n",ans1,ans2,ans3);
return 0;
}

洛谷 P4013 数字梯形问题【最大费用最大流】的更多相关文章

  1. 洛谷P4013 数字梯形问题(费用流)

    传送门 两个感受:码量感人……大佬nb…… 规则一:$m$条路径都不相交,那么每一个点只能经过一次,那么考虑拆点,把每一个点拆成$A_{i,j}$和$B_{i,j}$,然后两点之间连一条容量$1$,费 ...

  2. 洛谷P4013数字梯形问题——网络流24题

    题目:https://www.luogu.org/problemnew/show/P4013 最大费用最大流裸题: 注意:在第二种情况中,底层所有点连向汇点的边容量应该为inf,因为可以有多条路径结束 ...

  3. 洛谷P4013 数字梯形问题(费用流)

    题意 $N$行的矩阵,第一行有$M$个元素,第$i$行有$M + i - 1$个元素 问在三个规则下怎么取使得权值最大 Sol 我只会第一问qwq.. 因为有数量的限制,考虑拆点建图,把每个点拆为$a ...

  4. 洛谷 P4013 数字梯形问题

    ->题目链接 题解: 网络流. #include<cstdio> #include<iostream> #include<queue> #include< ...

  5. COGS738 [网络流24题] 数字梯形(最小费用最大流)

    题目这么说: 给定一个由n 行数字组成的数字梯形如下图所示.梯形的第一行有m 个数字.从梯形的顶部的m 个数字开始,在每个数字处可以沿左下或右下方向移动,形成一条从梯形的顶至底的路径.规则1:从梯形的 ...

  6. 洛谷P3381 - 【模板】最小费用最大流

    原题链接 题意简述 模板题啦~ 题解 每次都以费用作为边权求一下最短路,然后沿着最短路增广. Code //[模板]最小费用最大流 #include <cstdio> #include & ...

  7. 洛谷 P2053 [SCOI2007]修车(最小费用最大流)

    题解 最小费用最大流 n和m是反着的 首先, \[ ans = \sum{cost[i][j]}*k \] 其中,\(k\)为它在当前技术人员那里,排倒数第\(k\)个修 我们可以对于每个技术人员进行 ...

  8. 洛谷 P3381【模板】最小费用最大流

    题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表 ...

  9. 洛谷 P3381 【模板】最小费用最大流

    题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行包含四个正整数\(N.M.S.T\) ...

随机推荐

  1. 如何判断一个app是原生app还是 webapp,或者是混合app

    1.(快速)滚动起来是否比较卡2.图片加载失败的图标 断网检查不是绝对的,web app并不一定是在远程服务器上的, 也能pack在程序里,load本地的资源也能算是web app.     web ...

  2. django学习之- Models笔记

    1:创建数据库表 #单表# app01_user 生成的表明为 tb1class User(models.Model): name = models.CharField(max_length=32,d ...

  3. 1370 - Bi-shoe and Phi-shoe(LightOJ1370)(数论基础,欧拉函数)

    http://lightoj.com/volume_showproblem.php?problem=1370 欧拉函数: 在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目. φ(n) ...

  4. S5700&S5710 产品文档 : 配置

    http://support.huawei.com/hdx/hdx.do?docid=SC0000699332&lang=zh&path=PBI1-C103367%2FPBI1-C10 ...

  5. eclipse默认指定项目的编译器版本

    eclipse 提示 @Override must override a superclass method 问题解决 今天新换了一个Eclipse 版本: Build id: 20140224-06 ...

  6. 过滤器链chain.doFilter(request,response)含义

    过滤器的生命周期一般都要经过下面三个阶段: 初始化 当容器第一次加载该过滤器时,init() 方法将被调用.该类在这个方法中包含了一个指向 Filter Config 对象的引用. 过滤 过滤器的大多 ...

  7. DELPHI最新的产品路线图

    1)根据众多像您一样的客户要求,我们改为一年一个重大版本及更多更新.这个计划回到一年发布周期并提供额外的2或3个包含附加功能及支持期间发布的新版操作系统的更新. 2)在 RAD Studio  10. ...

  8. topcoder srm 552

    div1 250pt: 题意:用RGB三种颜色的球摆N层的三角形,要求相邻的不同色,给出RGB的数量,问最多能摆几个 解法:三种颜色的数量要么是全一样,要么是两个一样,另外一个比他们多一个,于是可以分 ...

  9. 鼠标放上去Div旋转特效代码

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  10. Android经常使用设计模式(二)

    继上一篇 Android经常使用设计模式(一)里认识了观察者.适配器.代理等三种模式,这一篇将会解说下面三种模式: 工厂模式 单例模式 命令模式 1.工厂模式(Factory Pattern) 工厂模 ...