hdu4352(数位DP + LIS(nlogn))
题目描述:
给定一个区间中,将区间的每一个数看成一个字符串,求这个区间内每个字符串的最大上升
子序列等于k的个数。
可以采用nlogn的LIS(用一个C数组记录长度为i的最大上升子序列的结尾最小值),
所以可以采用dfs暴力枚举每一个数,并且由于数的长度最大为18位,
所以c数组可以用一个状态数表示。
dp[len][state][k],代表长度为len的数,c数组状态为state,上升子序列长度等于k的个数。
为什么要加k这一维?因为如果有多组询问,k不相同,那么就不能用之前计算过的dp[len][state]状态,
它保存的其实是,上升子序列长度等于之前k的个数。
可以记忆化的理由:分析到如果不同数的前缀对C数组产生的一样,那么两者等价,那么可以记忆化。
个人理解:其实数位DP考虑记忆化,就要从不同前缀对之后len位的影响考虑。
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;
#define LL long long
LL dp[][<<][]; //长度为30,最大上升子序列状态为s,是否有等于k的个数
int digit[];
int K;
int bit(int state)
{
int cnt=;
while(state>)
{
if(state & ==)
cnt++;
state>>=;
}
return cnt;
} int solve(int state,int i)
{
int j;
int ok=;
for(j=i;j<=;j++)
{
if(state & (<<j))
{
ok=; break;
}
}
int s;
if(ok==)
s=( state ^ (<<j) )| (<<i);
else
s=state | (<< i);
return s;
} LL dfs(int len,int state,bool z,bool fp)
{
if( len== )
return bit(state)==K;
if(!fp && dp[len][state][K] != -)
return dp[len][state][K];
LL ret = ;
int fpmax = fp ? digit[len] : ;
for(int i=;i<=fpmax;i++)
{
int s=solve(state,i);
ret += dfs(len-,(z&&(i==)) ? : s, z&&(i==) ,fp && i == fpmax);
}
if(!fp)
dp[len][state][K] = ret;
return ret;
} LL f(LL n)
{
int len = ;
while(n)
{
digit[++len] = n % ;
n /= ;
}
return dfs(len,,,true);
} int main()
{
//freopen("test.txt","r",stdin);
LL a,b;
int t,Case=;
scanf("%d",&t);
memset(dp,-,sizeof(dp));
while(t--)
{
scanf("%lld%lld%d",&a,&b,&K);
if(a==b)
printf("Case #%d: %d\n",++Case,);
printf("Case #%d: %lld\n",++Case,f(b)-f(a-));
} return ;
}
hdu4352(数位DP + LIS(nlogn))的更多相关文章
- hdu4352 XHXJ's LIS(数位DP + LIS + 状态压缩)
#define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefully reading the entire ...
- HDU 4352 XHXJ's LIS 数位dp lis
目录 题目链接 题解 代码 题目链接 HDU 4352 XHXJ's LIS 题解 对于lis求的过程 对一个数列,都可以用nlogn的方法来的到它的一个可行lis 对这个logn的方法求解lis时用 ...
- HDU 4352 XHXJ's LIS (数位DP+LIS+状态压缩)
题意:给定一个区间,让你求在这个区间里的满足LIS为 k 的数的数量. 析:数位DP,dp[i][j][k] 由于 k 最多是10,所以考虑是用状态压缩,表示 前 i 位,长度为 j,状态为 k的数量 ...
- HDU 4352 - XHXJ's LIS - [数位DP][LIS问题]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...
- hdu4352 数位dp+状态压缩+一个tip
按照nlogn求lis的方法,把lis的状态压缩了,每次新加一个数就把它右边第一个数的位置置为0,然后把这个数加进去 一个需要注意的地方,如果前面都是0,那么状态s中代表0的位置不可以是1,因为这种情 ...
- HDU 4352 区间的有多少个数字满足数字的每一位上的数组成的最长递增子序列为K(数位DP+LIS)
题目:区间的有多少个数字满足数字的每一位上的数组成的最长递增子序列为K 思路:用dp[i][state][j]表示到第i位状态为state,最长上升序列的长度为k的方案数.那么只要模拟nlogn写法的 ...
- HDU 4352 数位dp
XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- hdu4352 XHXJ's LIS[数位DP套状压DP+LIS$O(nlogn)$]
统计$[L,R]$内LIS长度为$k$的数的个数,$Q \le 10000,L,R < 2^{63}-1,k \le 10$. 首先肯定是数位DP.然后考虑怎么做这个dp.如果把$k$记录到状态 ...
- HDU4352 XHXJ's LIS 题解 数位DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 题目大意: 求区间 \([L,R]\) 范围内最长上升子序列(Longest increasin ...
随机推荐
- SPOJ FAVDICE 数学期望
题目大意: 一个有n面的色子抛掷多少次能使所有面都能被抛到过,求期望值 总面数为n,当已经抛到过 i 个不同面时,我们抛出下一个不同面的概率为 (n-i)/n,那么抛的次数为 n/(n-i) 将所有抛 ...
- 字典树模板题 POJ 2503
#include <cstdio> #include <cstring> ],fr[]; int st; struct Tire{ ]; ]; }node[]; void in ...
- android L版本AAL新架构
[DESCRIPTION] 和之前KK版本相比,在L版本上面AAL的架构也有发生一些改变. 拿掉了之前KK平台上使用的MTK LABC,使用Android原生的自动背光功能. AALService内部 ...
- github新建本地仓库,再同步远程仓库基本用法
github新建本地仓库,再同步远程仓库基本用法 1 mkdir gitRepo 2 cd gitRepo 3 git init #初始化本地仓库 4 git add xxx #添加要push到远 ...
- 神秘数(bzoj 4408)
Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13}, 1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = ...
- Xcode 全局搜索失效的问题
早上手一快不知点了什么,然后全局搜索的功能就不起作用了.百度了一下才知道,原来把搜索范围给改了,改回来如下:
- CodeForces 429B【dp】
题意: 在一个n*m的矩阵中有两只虫子,一只从左上角向右下角移动,另外一只从左下角向右上角移动. 要求: 1.第一只虫子每次只能向左或者向下移动一格,另外一只只能向上或者向右移动一格. 2.两只虫子的 ...
- hdu6080(最小环)
题目 http://acm.hdu.edu.cn/showproblem.php?pid=6080 分析 很妙的思路,将里面的点集当作A,将外面的点集当作B 然后O(n^2)枚举两两B点,设一个是u, ...
- CF821E(多次矩阵快速幂)
题意: 冈伦从二维平面上(0,0)走到(k,0),(k<=1e18),每次有三个行动方向:右上一格.右方一格.右下一格,问一共有多少种走的方案 限制:每段x都有一个天花板,一共有n段天花板(n& ...
- Python开发的一个IDE推荐,Sublime Text 3
Sublime Text 3 官网下载地址为, LINK. 目前最新版本是3114. 这里转载泱泱长空的授权文件(注册码)文章[1],将几个可以用的注册码列举如下: 补充:2016.05 最近经过测试 ...