Spark 多项式逻辑回归__二分类
package Spark_MLlib import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.{LogisticRegression, LogisticRegressionModel}
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.sql.SparkSession object 多项式逻辑回归__二分类 {
val spark=SparkSession.builder().master("local").getOrCreate()
import spark.implicits._ //支持把一个RDD隐式转换为一个DataFrame
def main(args: Array[String]): Unit = {
val df =spark.sparkContext.textFile("file:///home/soyo/桌面/spark编程测试数据/soyo.txt")
.map(_.split(",")).map(x=>data_schema(Vectors.dense(x().toDouble,x().toDouble,x().toDouble,x().toDouble),x())).toDF()
df.show()
df.createOrReplaceTempView("data_schema")
val df_data=spark.sql("select * from data_schema where label !='soyo2'") //这里soyo2需要加单引号,不然报错
// df_data.map(x=>x(1)+":"+x(0)).collect().foreach(println)
df_data.show()
val labelIndexer=new StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(df_data)
val featureIndexer=new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").fit(df_data) //目的在特征向量中建类别索引
val Array(trainData,testData)=df_data.randomSplit(Array(0.7,0.3))
val lr=new LogisticRegression().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures").setMaxIter().setRegParam(0.3).setElasticNetParam(0.8).setFamily("multinomial")//设置elasticnet混合参数为0.8,setFamily("multinomial"):设置为多项逻辑回归,不设置setFamily为二项逻辑回归
val labelConverter=new IndexToString().setInputCol("prediction").setOutputCol("predictionLabel").setLabels(labelIndexer.labels) val lrPipeline=new Pipeline().setStages(Array(labelIndexer,featureIndexer,lr,labelConverter))
val lrPipeline_Model=lrPipeline.fit(trainData)
val lrPrediction=lrPipeline_Model.transform(testData)
lrPrediction.show(false)
// lrPrediction.take(100).foreach(println)
//模型评估
val evaluator=new MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction")
val lrAccuracy=evaluator.evaluate(lrPrediction)
println("准确率为: "+lrAccuracy)
val lrError=-lrAccuracy
println("错误率为: "+lrError)
val LRmodel=lrPipeline_Model.stages().asInstanceOf[LogisticRegressionModel]
println("二项逻辑回归模型系数矩阵: "+LRmodel.coefficientMatrix)
println("二项逻辑回归模型的截距向量: "+LRmodel.interceptVector)
println("类的数量(标签可以使用的值): "+LRmodel.numClasses)
println("模型所接受的特征的数量: "+LRmodel.numFeatures) } }
结果:
+-----------------+-----+
| features|label|
+-----------------+-----+
|[5.1,3.5,1.4,0.2]|soyo1|
|[4.9,3.0,1.4,0.2]|soyo1|
|[4.7,3.2,1.3,0.2]|soyo1|
|[4.6,3.1,1.5,0.2]|soyo1|
|[5.0,3.6,1.4,0.2]|soyo1|
|[5.4,3.9,1.7,0.4]|soyo1|
|[4.6,3.4,1.4,0.3]|soyo1|
|[5.0,3.4,1.5,0.2]|soyo1|
|[4.4,2.9,1.4,0.2]|soyo1|
|[4.9,3.1,1.5,0.1]|soyo1|
|[5.4,3.7,1.5,0.2]|soyo1|
|[4.8,3.4,1.6,0.2]|soyo1|
|[4.8,3.0,1.4,0.1]|soyo1|
|[4.3,3.0,1.1,0.1]|soyo1|
|[5.8,4.0,1.2,0.2]|soyo1|
|[5.7,4.4,1.5,0.4]|soyo1|
|[5.4,3.9,1.3,0.4]|soyo1|
|[5.1,3.5,1.4,0.3]|soyo1|
|[5.7,3.8,1.7,0.3]|soyo1|
|[5.1,3.8,1.5,0.3]|soyo1|
+-----------------+-----+
only showing top 20 rows
+-----------------+-----+------------+------------------+------------------------------------------+----------------------------------------+----------+---------------+
|features |label|indexedLabel|indexedFeatures |rawPrediction |probability |prediction|predictionLabel|
+-----------------+-----+------------+------------------+------------------------------------------+----------------------------------------+----------+---------------+
|[4.6,3.1,1.5,0.2]|soyo1|0.0 |[4.6,3.1,1.5,1.0] |[0.3841092104753886,-0.384109210475388] |[0.6831353764654857,0.3168646235345142] |0.0 |soyo1 |
|[4.6,3.2,1.4,0.2]|soyo1|0.0 |[4.6,3.2,1.4,1.0] |[0.4118074545189242,-0.41180745451892353] |[0.6950031457169539,0.3049968542830461] |0.0 |soyo1 |
|[4.6,3.4,1.4,0.3]|soyo1|0.0 |[4.6,3.4,1.4,2.0] |[0.41345332780578103,-0.41345332780578037]|[0.6957004614212158,0.30429953857878417]|0.0 |soyo1 |
|[4.7,3.2,1.6,0.2]|soyo1|0.0 |[4.7,3.2,1.6,1.0] |[0.39085103161962165,-0.390851031619621] |[0.6860468315498303,0.31395316845016974]|0.0 |soyo1 |
|[4.9,3.0,1.4,0.2]|soyo1|0.0 |[4.9,3.0,1.4,1.0] |[0.37736738933115554,-0.377367389331155] |[0.6802095073085258,0.3197904926914742] |0.0 |soyo1 |
|[4.9,3.1,1.5,0.1]|soyo1|0.0 |[4.9,3.1,1.5,0.0] |[0.4169034023763003,-0.4169034023762997] |[0.697159256477463,0.302840743522537] |0.0 |soyo1 |
|[5.0,3.0,1.6,0.2]|soyo1|0.0 |[5.0,3.0,1.6,1.0] |[0.356410966431853,-0.35641096643185244] |[0.6710244037082002,0.32897559629179984]|0.0 |soyo1 |
|[5.0,3.4,1.5,0.2]|soyo1|0.0 |[5.0,3.4,1.5,1.0] |[0.4357693082570414,-0.4357693082570408] |[0.705065751202206,0.2949342487977939] |0.0 |soyo1 |
|[5.0,3.4,1.6,0.4]|soyo1|0.0 |[5.0,3.4,1.6,3.0] |[0.35970271300556683,-0.35970271300556617]|[0.6724760743873281,0.3275239256126718] |0.0 |soyo1 |
|[5.1,3.4,1.5,0.2]|soyo1|0.0 |[5.1,3.4,1.5,1.0] |[0.4357693082570414,-0.4357693082570408] |[0.705065751202206,0.2949342487977939] |0.0 |soyo1 |
|[5.4,3.4,1.7,0.2]|soyo1|0.0 |[5.4,3.4,1.7,1.0] |[0.4148128853577389,-0.41481288535773825] |[0.6962757951954652,0.3037242048045349] |0.0 |soyo1 |
|[5.6,2.8,4.9,2.0]|soyo3|1.0 |[5.6,2.8,4.9,12.0]|[-0.3845461875044362,0.38454618750443703] |[0.3166754764713344,0.6833245235286656] |1.0 |soyo3 |
|[5.7,3.8,1.7,0.3]|soyo1|0.0 |[5.7,3.8,1.7,2.0] |[0.45089882383236457,-0.4508988238323638] |[0.7113187796385543,0.2886812203614457] |0.0 |soyo1 |
|[5.7,4.4,1.5,0.4]|soyo1|0.0 |[5.7,4.4,1.5,3.0] |[0.5423812503940613,-0.5423812503940606] |[0.7473941839256351,0.25260581607436505]|0.0 |soyo1 |
|[5.8,2.8,5.1,2.4]|soyo3|1.0 |[5.8,2.8,5.1,16.0]|[-0.5366793780073855,0.5366793780073863] |[0.2547648665744027,0.7452351334255972] |1.0 |soyo3 |
|[6.0,2.2,5.0,1.5]|soyo3|1.0 |[6.0,2.2,5.0,7.0] |[-0.3343736350128348,0.33437363501283546] |[0.3387774047228901,0.6612225952771099] |1.0 |soyo3 |
|[6.2,2.8,4.8,1.8]|soyo3|1.0 |[6.2,2.8,4.8,10.0]|[-0.3084795922529615,0.30847959225296234] |[0.3504733529544735,0.6495266470455265] |1.0 |soyo3 |
|[6.3,2.9,5.6,1.8]|soyo3|1.0 |[6.3,2.9,5.6,10.0]|[-0.3750852512562874,0.3750852512562882] |[0.3207841503157466,0.6792158496842534] |1.0 |soyo3 |
|[6.3,3.3,6.0,2.5]|soyo3|1.0 |[6.3,3.3,6.0,17.0]|[-0.5776773099857371,0.577677309985738] |[0.23951239936093965,0.7604876006390604]|1.0 |soyo3 |
|[6.3,3.4,5.6,2.4]|soyo3|1.0 |[6.3,3.4,5.6,16.0]|[-0.485750239692336,0.4857502396923369] |[0.2745815258875292,0.7254184741124707] |1.0 |soyo3 |
+-----------------+-----+------------+------------------+------------------------------------------+----------------------------------------+----------+---------------+
only showing top 20 rows
准确率为: 1.0
错误率为: 0.0
二项逻辑回归模型系数矩阵: 0.0 0.17220032593884316 -0.1047821144965127 -0.03279419190091169
0.0 -0.172200325938843 0.10478211449651276 0.03279419190091169
二项逻辑回归模型的截距向量: [0.04025556371065551,-0.04025556371065551]
类的数量(标签可以使用的值): 2
模型所接受的特征的数量: 4
Spark 多项式逻辑回归__二分类的更多相关文章
- Spark 多项式逻辑回归__多分类
package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{B ...
- Spark 二项逻辑回归__二分类
package Spark_MLlib import org.apache.spark.ml.Pipeline import org.apache.spark.ml.classification.{B ...
- scikit-learn机器学习(二)逻辑回归进行二分类(垃圾邮件分类),二分类性能指标,画ROC曲线,计算acc,recall,presicion,f1
数据来自UCI机器学习仓库中的垃圾信息数据集 数据可从http://archive.ics.uci.edu/ml/datasets/sms+spam+collection下载 转成csv载入数据 im ...
- 机器学习---逻辑回归(二)(Machine Learning Logistic Regression II)
在<机器学习---逻辑回归(一)(Machine Learning Logistic Regression I)>一文中,我们讨论了如何用逻辑回归解决二分类问题以及逻辑回归算法的本质.现在 ...
- stanford coursera 机器学习编程作业 exercise 3(逻辑回归实现多分类问题)
本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于逻辑回归的一个编程练习,可参考:http://www.cnb ...
- Logistic Regression(逻辑回归)(二)—深入理解
(整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 上一篇讲解了Logistic Regression的基础知识,感觉 ...
- 【原】Spark之机器学习(Python版)(二)——分类
写这个系列是因为最近公司在搞技术分享,学习Spark,我的任务是讲PySpark的应用,因为我主要用Python,结合Spark,就讲PySpark了.然而我在学习的过程中发现,PySpark很鸡肋( ...
- Spark Mllib逻辑回归算法分析
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3816289.html 本文以spark 1.0.0版本MLlib算法为准进行分析 一.代码结构 逻辑回归 ...
- Spark LogisticRegression 逻辑回归之建模
导入包 import org.apache.spark.sql.SparkSession import org.apache.spark.sql.Dataset import org.apache.s ...
随机推荐
- 语法,if,while循环,for循环
目录 一.语法 二.while循环 三.for循环 一.语法 if: if判断其实是在模拟人做判断.就是说如果这样干什么,如果那样干什么.对于ATM系统而言,则需要判断你的账号密码的正确性. if 条 ...
- 零基础入门Python数据分析,只需要看懂这一张图,附下载链接!
摘要 在做数据分析的过程中,经常会想数据分析到底是什么?为什么要做数据数据分析?数据分析到底该怎么做?等这些问题.对于这些问题,一开始也只是有个很笼统的认识. 最近这两天,读了一下早就被很多人推荐的& ...
- LeetCode(36)Valid Sudoku
题目 Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules. The Sudoku board could ...
- golang函数指针的效果
package main import ( "fmt" ) func fun1(key string) { fmt.Printf("fun11 key=%s\n" ...
- HDU-1272小希的迷宫,并查集?其实不用并查集;
小希的迷宫 ...
- Android TextView内容过长加省略号
在Android TextView中有个内容过长加省略号的属性,即ellipsize,用法如下: 在xml中: android:ellipsize = "end" //省略号在结尾 ...
- 跪啃SAM
struct SAM { ],size,last,pre[maxn],pos[maxn]; SAM() { size=; memset(ch[],,])); pre[]=-; } int idx(ch ...
- POJ 3276 Face The Right Way【枚举】
题意: N头牛站成一条线,分别朝向前后两个方向,机器可以使连续K头牛同时改变方向,要求所有牛最终朝向前方,问机器操作次数的最小值及此时的最小K值. 分析: 第一眼看感觉是二分搜索K,再仔细读题, pl ...
- 使用Tornado实现http代理
0x00 http代理 http代理的用处非常多,市面上也有公开的代理,可是有时候为了工作须要,比方分析应用层流量.做数据訪问控制.甚至做监控等等.Tornado提供了一些非常方便的环境和API,我们 ...
- c++11中的线程、锁和条件变量
void func(int i, double d, const string& s) { cout << i << ", " << d ...