pid=1258">Sum It Up

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 3953    Accepted Submission(s): 2032

Problem Description
Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t=4, n=6, and the list is [4,3,2,2,1,1], then there are four different sums that equal 4: 4,3+1,2+2, and 2+1+1.(A number
can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.
 
Input
The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x1,...,xn. If n=0 it signals the end of the input; otherwise, t will be a positive integer
less than 1000, n will be an integer between 1 and 12(inclusive), and x1,...,xn will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.
 
Output
For each test case, first output a line containing 'Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line 'NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated
in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number
must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distince; the same sum connot appear twice.
 
Sample Input
4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0
 
Sample Output
Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25
 

记录答案: 用一个数组跟着搜索路线进行下去,顺便就把答案记录了。

防止答案反复:在一次遍历数组时。记录上一次搜索的值。当前值不和该值相等就好了!

(真是学无止境,继续AC)

#include"stdio.h"
#include"string.h"
#include"math.h"
#include"algorithm"
using namespace std;
#define N 20
int n,t,a[N];
int ans[N],flag;
void dfs(int x,int s,int cnt)
{
int i,tmp;
if(s>t)
return ;
if(s==t)
{
for(i=0;i<cnt;i++)
{
if(i==cnt-1)
printf("%d\n",ans[i]);
else
printf("%d+",ans[i]);
}
flag=1;
}
else
{
tmp=-1;
for(i=x;i<n;i++)
{
if(tmp!=a[i]) //保留当前的数,能避免反复
{
tmp=ans[cnt++]=a[i];
dfs(i+1,s+a[i],cnt);
cnt--;
}
}
}
}
int main()
{
int i;
while(scanf("%d%d",&t,&n),n||t)
{
for(i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
printf("Sums of %d:\n",t);
flag=0;
dfs(0,0,0);
if(flag==0)
printf("NONE\n");
}
return 0;
}

hdu 1258 Sum It Up (dfs+路径记录)的更多相关文章

  1. HDOJ(HDU).1258 Sum It Up (DFS)

    HDOJ(HDU).1258 Sum It Up (DFS) [从零开始DFS(6)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双 ...

  2. (step4.3.4)hdu 1258(Sum It Up——DFS)

    题目大意:输入t,n,接下来有n个数组成的一个序列.输出总和为t的子序列 解题思路:DFS 代码如下(有详细的注释): #include <iostream> #include <a ...

  3. HDU 1258 Sum It Up(DFS)

    题目链接 Problem Description Given a specified total t and a list of n integers, find all distinct sums ...

  4. HDU 1258 Sum It Up(dfs 巧妙去重)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1258 Sum It Up Time Limit: 2000/1000 MS (Java/Others) ...

  5. hdu 1258 Sum It Up(dfs+去重)

    题目大意: 给你一个总和(total)和一列(list)整数,共n个整数,要求用这些整数相加,使相加的结果等于total,找出所有不相同的拼凑方法. 例如,total = 4,n = 6,list = ...

  6. HDU 1258 Sum It Up (DFS)

    Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  7. HDU 1258 Sum It Up

    Sum It Up Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  8. HDOJ(HDU).1016 Prime Ring Problem (DFS)

    HDOJ(HDU).1016 Prime Ring Problem (DFS) [从零开始DFS(3)] 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架 ...

  9. 剑指 Offer 34. 二叉树中和为某一值的路径 + 记录所有路径

    剑指 Offer 34. 二叉树中和为某一值的路径 Offer_34 题目详情 题解分析 本题是二叉树相关的题目,但是又和路径记录相关. 在记录路径时,可以使用一个栈来存储一条符合的路径,在回溯时将进 ...

随机推荐

  1. 03CSS内容背景

    CSS内容背景 设置背景颜色——background-color  插入背景图片——background-image  设置背景图片位置——background-position 设置重复背景图片—— ...

  2. spring springmvc 获取所有url

    @Autowired private RequestMappingHandlerMapping handlerMapping; @Test public void getAllApi() { Map& ...

  3. [驱动] 一个简单内核驱动,通过qemu调试(1)

    模块 通过在HOST上修改linux kernel源代码,重新编译一个vmlinux,然后,通过qemu根据这个bzImage 启动一个vm,进行调试 #cat drivers/char/test.c ...

  4. 第1节 yarn:15、关于yarn中常用的参数设置

    第一个参数:container分配最小内存 yarn.scheduler.minimum-allocation-mb     1024   给应用程序container分配的最小内存 第二个参数:co ...

  5. 诊断:RHEL7安装11.2RAC时root.sh错误ohasd failed to start

    RHEL 7.5中安装11gRAC时,在grid infrastructure的root.sh执行时,报错: # /oracle/product/11g/grid/root.sh ... Adding ...

  6. Linux从入门到适应(四):Ubuntu 16.04环境下,安装Nvidia驱动,cuda9.2和 cudnn

    在安装深度学习框架之前,cuda和cudnn是必须要提前安装的,现在按照流程而nvidia驱动的版本和cuda版本有这一些对应关系,所以需要按照版本进行安装,现在说一下如何安装: 1 安装nvidia ...

  7. YOLOv3配置(win10+opencv3.40+cuda9.1+cudnn7.1+vs2015)

    最近心血来潮想学一下YOLOv3,于是就去网上看了YOLOv3在win10下的配置教程.在配置过程中塌坑无数,花了很多时间和精力,所以我想就此写一篇博客来介绍在在win10+vs2015的环境下如何配 ...

  8. pyton学习之路

    文件操作 打开文件的模式有: r,只读模式(默认). w,只写模式.[不可读:不存在则创建:存在则删除内容:] a,追加模式.[可读:   不存在则创建:存在则只追加内容:] "+" ...

  9. 集训第五周动态规划 I题 记忆化搜索

    Description Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道 ...

  10. RS232

    RS232的最大的传输速率大约10KBytes/s. 全双工工作方式,异步.数据是8位作为一块来发送的,先发送最低位,最后发送最高位. 在232通信中: Both side of the cable ...