Tricks Device

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 389    Accepted Submission(s): 100

Problem Description
Innocent Wu follows Dumb Zhang into a ancient tomb. Innocent Wu’s at the entrance of the tomb while Dumb Zhang’s at the end of it. The tomb is made up of many chambers, the total number is N. And there are M channels connecting the
chambers. Innocent Wu wants to catch up Dumb Zhang to find out the answers of some questions, however, it’s Dumb Zhang’s intention to keep Innocent Wu in the dark, to do which he has to stop Innocent Wu from getting him. Only via the original shortest ways
from the entrance to the end of the tomb costs the minimum time, and that’s the only chance Innocent Wu can catch Dumb Zhang.

Unfortunately, Dumb Zhang masters the art of becoming invisible(奇门遁甲) and tricks devices of this tomb, he can cut off the connections between chambers by using them. Dumb Zhang wanders how many channels at least he has to cut to stop Innocent Wu. And Innocent
Wu wants to know after how many channels at most Dumb Zhang cut off Innocent Wu still has the chance to catch Dumb Zhang.
 
Input
There are multiple test cases. Please process till EOF.

For each case,the first line must includes two integers, N(<=2000), M(<=60000). N is the total number of the chambers, M is the total number of the channels.

In the following M lines, every line must includes three numbers, and use ai、bi、li as channel i connecting chamber ai and bi(1<=ai,bi<=n), it costs li(0<li<=100) minute to pass channel i.

The entrance of the tomb is at the chamber one, the end of tomb is at the chamber N.
 
Output
Output two numbers to stand for the answers of Dumb Zhang and Innocent Wu’s questions.
 
Sample Input
8 9
1 2 2
2 3 2
2 4 1
3 5 3
4 5 4
5 8 1
1 6 2
6 7 5
7 8 1
 
Sample Output
2 6
 
Source
 
Recommend
We have carefully selected several similar problems for you:  

pid=5299" target="_blank">5299 5298 

pid=5297" target="_blank">5297 5296 

pid=5295" target="_blank">5295 

题意:给一个无向图N个点M条边,每条边都有一个时间花费,Innocent Wu仅仅实用最短的时间去追 Dumb Zhang才干追上。但 Dumb Zhang不想让他追上。他能够断开随意边。问至少要断几条边,得答案1。答案2=最多能让他断多少路使得WU仍能追上zhang。
解题:用SPFA求出从N到全部点的最短路,和到全部点最短路上最少经过的边数numk[],这样能够得到答案2=M-numk[1]。接下来就用最大流来做,关键在找增广流时要加入一个满足到达N点时是最短路。
#include<stdio.h>
#include<string.h>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
#define captype int const int MAXN = 2010; //点的总数
const int MAXM = 400010; //边的总数
const int INF = 1<<30;
struct EDG{
int to,next;
captype cap,flow;
int d;
} edg[MAXM];
int eid,head[MAXN];
int gap[MAXN]; //每种距离(或可觉得是高度)点的个数
int dis[MAXN]; //每一个点到终点eNode 的最短距离
int cur[MAXN]; //cur[u] 表示从u点出发可流经 cur[u] 号边
int pre[MAXN];
int D[MAXN], vist[MAXN], mindis; void init(){
eid=0;
memset(head,-1,sizeof(head));
}
//有向边 三个參数。无向边4个參数
void addEdg(int u,int v,int d,captype rc=0){
edg[eid].to=v; edg[eid].next=head[u]; edg[eid].d=d;
edg[eid].cap=1; edg[eid].flow=0; head[u]=eid++; edg[eid].to=u; edg[eid].next=head[v]; edg[eid].d=INF;
edg[eid].cap=rc; edg[eid].flow=0; head[v]=eid++;
}
captype maxFlow_sap(int sNode,int eNode, int n){//n是包含源点和汇点的总点个数,这个一定要注意
memset(gap,0,sizeof(gap));
memset(dis,0,sizeof(dis));
memcpy(cur,head,sizeof(head));
memset(vist,-1,sizeof(vist));
pre[sNode] = -1;
gap[0]=n;
captype ans=0; //最大流
vist[sNode]=0;
int u=sNode ,i ;
while(dis[sNode]<n){ //推断从sNode点有没有流向下一个相邻的点
if(u==eNode){ //找到一条可增流的路
captype Min=INF ;
int inser;
for( i=pre[u]; i!=-1; i=pre[edg[i^1].to]) //从这条可增流的路找到最多可增的流量Min
if(Min>edg[i].cap-edg[i].flow){
Min=edg[i].cap-edg[i].flow;
inser=i;
}
for( i=pre[u]; i!=-1; i=pre[edg[i^1].to]){
edg[i].flow+=Min;
edg[i^1].flow-=Min; //可回流的边的流量
}
ans+=Min;
u=edg[inser^1].to;
continue;
}
bool flag = false; //推断是否能从u点出发可往相邻点流
int v;
for( i=cur[u]; i!=-1; i=edg[i].next){
v=edg[i].to;
if(edg[i].cap>0&&vist[u]+edg[i].d+D[v]!=mindis)//假设是正流,则必须保证是最短的一条路,假设是逆流。表明v点己是在最短路上
continue;
vist[v]=mindis-D[v];
if( edg[i].cap-edg[i].flow>0 && dis[u]==dis[v]+1){
flag=true;
cur[u]=pre[v]=i;
break;
}
}
if(flag){
u=v;
continue;
}
//假设上面没有找到一个可流的相邻点。则改变出发点u的距离(也可觉得是高度)为相邻可流点的最小距离+1
int Mind= n;
for( i=head[u]; i!=-1; i=edg[i].next){
v=edg[i].to;
if(edg[i].cap>0&&vist[u]+edg[i].d+D[v]!=mindis)
continue;
vist[v]=mindis-D[v];
if( edg[i].cap-edg[i].flow>0 && Mind>dis[v]){
Mind=dis[v];
cur[u]=i;
}
} gap[dis[u]]--;
if(gap[dis[u]]==0) return ans; //当dis[u]这样的距离的点没有了,也就不可能从源点出发找到一条增广流路径
//由于汇点到当前点的距离仅仅有一种,那么从源点到汇点必定经过当前点,然而当前点又没能找到可流向的点,那么必定断流
dis[u]=Mind+1;//假设找到一个可流的相邻点,则距离为相邻点距离+1。假设找不到,则为n+1
gap[dis[u]]++;
if(u!=sNode) u=edg[pre[u]^1].to; //退一条边
}
return ans;
}
int numk[MAXN];
void spfa(int s,int t,int n){
queue<int>q;
int inq[MAXN]={0},i;
for( i=1; i<=n; i++)
D[i]=INF;
D[t]=0; numk[t]=0;
q.push(t);
while(!q.empty()){
int u=q.front(); q.pop();
inq[u]=0;
for( i=head[u]; i!=-1; i=edg[i].next)
if(edg[i].d==INF&&D[edg[i].to]>D[u]+edg[i^1].d){
D[edg[i].to]=D[u]+edg[i^1].d;
numk[edg[i].to]=numk[u]+1;
if(inq[edg[i].to]==0)
inq[edg[i].to]=1,q.push(edg[i].to);
}
else if(edg[i].d==INF&&D[edg[i].to]==D[u]+edg[i^1].d&&numk[edg[i].to]>numk[u]+1)
{
numk[edg[i].to]=numk[u]+1;
if(inq[edg[i].to]==0)
inq[edg[i].to]=1,q.push(edg[i].to);
}
}
} int main()
{
int n,m,u,v,cost;
while(scanf("%d%d",&n,&m)>0)
{
init();
for(int i=1; i<=m; i++)
{
scanf("%d%d%d",&u,&v,&cost);
addEdg(u,v,cost);
addEdg(v,u,cost);
}
spfa(1,n,n);
int ans1,ans2;
ans2=m-numk[1];
mindis=D[1];
ans1=maxFlow_sap(1,n,n);
printf("%d %d\n",ans1,ans2);
}
}

HDU5294 Tricks Device(最大流+SPFA) 2015 Multi-University Training Contest 1的更多相关文章

  1. HDU 5294 Tricks Device(多校2015 最大流+最短路啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294 Problem Description Innocent Wu follows Dumb Zha ...

  2. HDU 5294 Tricks Device (最大流+最短路)

    题目链接:HDU 5294 Tricks Device 题意:n个点,m条边.而且一个人从1走到n仅仅会走1到n的最短路径.问至少破坏几条边使原图的最短路不存在.最多破坏几条边使原图的最短路劲仍存在 ...

  3. HDU5294——Tricks Device(最短路 + 最大流)

    第一次做最大流的题目- 这题就是堆模板 #include <iostream> #include <algorithm> #include <cmath> #inc ...

  4. hdu 3572 Task Schedule(最大流)2010 ACM-ICPC Multi-University Training Contest(13)——Host by UESTC

    题意: 告诉我们有m个任务和k个机器.第i个任务需要ci天完成,最早从第ai天开始,最晚在第bi天结束.每台机器每天可以执行一个任务.问,是否可以将所有的任务都按时完成? 输入: 首行输入一个整数t, ...

  5. Tricks Device (hdu 5294 最短路+最大流)

    Tricks Device Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

  6. SPFA+Dinic HDOJ 5294 Tricks Device

    题目传送门 /* 题意:一无向图,问至少要割掉几条边破坏最短路,问最多能割掉几条边还能保持最短路 SPFA+Dinic:SPFA求最短路时,用cnt[i]记录到i最少要几条边,第二个答案是m - cn ...

  7. 2015 Multi-University Training Contest 1 Tricks Device

    Tricks Device Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  8. HDOJ 5294 Tricks Device 最短路(记录路径)+最小割

    最短路记录路径,同一时候求出最短的路径上最少要有多少条边, 然后用在最短路上的边又一次构图后求最小割. Tricks Device Time Limit: 2000/1000 MS (Java/Oth ...

  9. hdu 5294 Tricks Device 最短路建图+最小割

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=5294 Tricks Device Time Limit: 2000/1000 MS (Java/Other ...

随机推荐

  1. RabbitMQ 基础概念介绍

    AMQP 消息模型 RabbitMQ 是基于 AMQP(高级消息队列协议)的一个开源实现,其内部实际也是 AMQP 的基本概念.

  2. luogu 2257 YY的GCD

    题目描述: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对. 题解: 代码: #include<cstdio> # ...

  3. Python之机器学习-朴素贝叶斯(垃圾邮件分类)

    目录 朴素贝叶斯(垃圾邮件分类) 邮箱训练集下载地址 模块导入 文本预处理 遍历邮件 训练模型 测试模型 朴素贝叶斯(垃圾邮件分类) 邮箱训练集下载地址 邮箱训练集可以加我微信:nickchen121 ...

  4. 新进Linux菜鸟,请多多关照

    早早知晓Linux的大名,一直未研究学习,近来看了kernel一些源代码,在网上搜过很多基础的知识.感觉这个Linux的世界很广大,值得好好深入学习.初生婴儿,呱呱落地,必先躺若干日后能坐,在学爬,进 ...

  5. http chunked 理解

    https://imququ.com/post/transfer-encoding-header-in-http.html #! /usr/bin/python #coding:utf8 import ...

  6. safepoint与UseCountedLoopSafepoints

    safepoint: JIT编码时,会在代码中所有方法的返回之前,以及所有非counted loop的循环(无界循环)回跳之前放置一个safepoint(counted loop则没有放置safepo ...

  7. JSONArray 遍历方式

    第一种(java8):遍历JSONArray 拼接字符串 public static void main(String[] args) { JSONArray jSONArray = new JSON ...

  8. 如何判断CPU、内存、磁盘的性能瓶颈?

    1.如何判断CPU.内存.磁盘的瓶颈? CPU瓶颈1) 查看CPU利用率.建议CPU指标如下 a) User Time:65%-70% b) System Time:30%-35% c) Idle:0 ...

  9. 数据库 SQL SQL转义

    SQL转义 @author ixenos 前言 类似文件分隔符在不同系统的实现不同,我们需要一个中间的转义字符来作为接口,各厂商再具体实现 而SQL的转义语法主要为了支持各种数据库普遍支持的特性,但各 ...

  10. [luoguP1033] 自由落体(模拟?)

    传送门 这不能算是数论题... 卡精度这事noip也做的出来.. 代码 #include <cmath> #include <cstdio> int n, ans; doubl ...