Pearls
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 7465   Accepted: 3695

Description

In Pearlania everybody is fond of pearls. One company, called The Royal Pearl, produces a lot of jewelry with pearls in it. The Royal Pearl has its name because it delivers to the royal family of Pearlania. But it also produces bracelets and necklaces for ordinary
people. Of course the quality of the pearls for these people is much lower then the quality of pearls for the royal family.In Pearlania pearls are separated into 100 different quality classes. A quality class is identified by the price for one single pearl
in that quality class. This price is unique for that quality class and the price is always higher then the price for a pearl in a lower quality class. 

Every month the stock manager of The Royal Pearl prepares a list with the number of pearls needed in each quality class. The pearls are bought on the local pearl market. Each quality class has its own price per pearl, but for every complete deal in a certain
quality class one has to pay an extra amount of money equal to ten pearls in that class. This is to prevent tourists from buying just one pearl. 

Also The Royal Pearl is suffering from the slow-down of the global economy. Therefore the company needs to be more efficient. The CFO (chief financial officer) has discovered that he can sometimes save money by buying pearls in a higher quality class than is
actually needed.No customer will blame The Royal Pearl for putting better pearls in the bracelets, as long as the 

prices remain the same. 

For example 5 pearls are needed in the 10 Euro category and 100 pearls are needed in the 20 Euro category. That will normally cost: (5+10)*10+(100+10)*20 = 2350 Euro.Buying all 105 pearls in the 20 Euro category only costs: (5+100+10)*20 = 2300 Euro. 

The problem is that it requires a lot of computing work before the CFO knows how many pearls can best be bought in a higher quality class. You are asked to help The Royal Pearl with a computer program. 



Given a list with the number of pearls and the price per pearl in different quality classes, give the lowest possible price needed to buy everything on the list. Pearls can be bought in the requested,or in a higher quality class, but not in a lower one. 

Input

The first line of the input contains the number of test cases. Each test case starts with a line containing the number of categories c (1<=c<=100). Then, c lines follow, each with two numbers ai and pi. The first of these numbers is the number of pearls ai
needed in a class (1 <= ai <= 1000). 

The second number is the price per pearl pi in that class (1 <= pi <= 1000). The qualities of the classes (and so the prices) are given in ascending order. All numbers in the input are integers. 

Output

For each test case a single line containing a single number: the lowest possible price needed to buy everything on the list. 

Sample Input

2
2
100 1
100 2
3
1 10
1 11
100 12

Sample Output

330
1344
水DP
题意: n件物品,给出数量和价格。(注意数量和价格都是升序给出的这个是能DP的关键)。要买掉所以商品 对于每类物品。所须要的价格是(a[i]+10)*p[i] ,即要多买10件,也能够把价格低的物品合并到高价格的物品那 即 (a[j]+a[i]+10)*p[j];代表把价格为i的物品合并到j上。设dp[i]为买完第i类物品的最优解
dp[i]=min(dp[i],dp[j]+(a[j+1]+a[j+2]+a[i]+10)*p[i]);
即对于第i类物品来说。它最多合并前面的i-1种物品,并且由于物品数目和价格都是升序的。所以能够证明仅仅要 第j类物品能合并,那么再往后就都能合并,由于第j类物品合并省出的钱能够表示为 a[j]*p[i]-(a[j]+10)*p[j] ;假设上式小于0,说明能够合并j,而当j增大,数目和价格都增大。所以仅仅会比j的时候更加省钱。即更能替换。
综上。有两种办法:
1.从前往后推,状态转移方程上面以给出。
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <string>
#include <cctype>
#include <vector>
#include <cstdio>
#include <cmath>
#include <deque>
#include <stack>
#include <map>
#include <set>
#define ll long long
#define maxn 116
#define pp pair<int,int>
#define INF 0x3f3f3f3f
#define max(x,y) ( ((x) > (y)) ? (x) : (y) )
#define min(x,y) ( ((x) > (y)) ? (y) : (x) )
using namespace std;
int n,a[110],p[110],dp[110],s[110];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
s[0]=0;
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a[i],&p[i]);
s[i]=s[i-1]+a[i];
}
dp[0]=0;
for(int i=1;i<=n;i++)
{
dp[i]=dp[i-1]+(a[i]+10)*p[i];
for(int j=0;j<i;j++)
dp[i]=min(dp[i],dp[j]+(s[i]-s[j]+10)*p[i]);
}
printf("%d\n",dp[n]);
}
return 0;
}
2.从后往前推。由于对于最后一种状态n,要从前面的n-1种状态中倒着连续合并。
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <string>
#include <cctype>
#include <vector>
#include <cstdio>
#include <cmath>
#include <deque>
#include <stack>
#include <map>
#include <set>
#define ll long long
#define maxn 116
#define pp pair<int,int>
#define INF 0x3f3f3f3f
#define max(x,y) ( ((x) > (y)) ? (x) : (y) )
#define min(x,y) ( ((x) > (y)) ? (y) : (x) )
using namespace std;
int n,a[110],p[110],dp[110],s[110];
int dfs(int x)
{
if(x<1)return 0;
if(dp[x]>=0)return dp[x];
if(x==1)return dp[x]=(a[x]+10)*p[x];
dp[x]=(a[x]+10)*p[x]+dfs(x-1);
for(int i=x-1;i>=1;i--)
dp[x]=min(dp[x],dfs(i-1)+(s[x]-s[i-1]+10)*p[x]);
return dp[x];
}
int main()
{
int T;
scanf("%d",&T);
while (T--)
{
s[0]=0;
memset(dp,-1,sizeof(dp));
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a[i],&p[i]);
s[i]=s[i-1]+a[i];
}
printf("%d\n",dfs(n));
}
return 0;
}

POJ 1260-Pearls(DP)的更多相关文章

  1. POJ 1260:Pearls(DP)

    http://poj.org/problem?id=1260 Pearls Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8 ...

  2. POJ 1260 Pearls 简单dp

    1.POJ 1260 2.链接:http://poj.org/problem?id=1260 3.总结:不太懂dp,看了题解 http://www.cnblogs.com/lyy289065406/a ...

  3. POJ 1260 Pearls (斜率DP)题解

    思路: 直接DP也能做,这里用斜率DP. dp[i] = min{ dp[j] + ( sum[i] - sum[j] + 10 )*pr[i]} ; k<j<i  =>  dp[j ...

  4. POJ 3034 Whac-a-Mole(DP)

    题目链接 题意 : 在一个二维直角坐标系中,有n×n个洞,每个洞的坐标为(x,y), 0 ≤ x, y < n,给你一把锤子可以打到地鼠,最开始的时候,你可以把锤子放在任何地方,如果你上一秒在( ...

  5. poj 2229 Sumsets(dp)

    Sumsets Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 400000/200000K (Java/Other) Total Sub ...

  6. poj -2229 Sumsets (dp)

    http://poj.org/problem?id=2229 题意很简单就是给你一个数n,然后选2的整数幂之和去组成这个数.问你不同方案数之和是多少? n很大,所以输出后9位即可. dp[i] 表示组 ...

  7. hdu 1300 Pearls(dp)

    Pearls Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  8. HDU 1300 Pearls (DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1300 题目大意:珠宝店有100种不同质量的珍珠,质量越高价钱越高,为了促进销售,每买一种类型的珍珠,要 ...

  9. poj 3230 Travel(dp)

    Description One traveler travels among cities. He has to pay for this while he can get some incomes. ...

  10. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

随机推荐

  1. 14 C#编程中的逻辑运算

    在C#编程中,我们经常需要处理这些情况. 1. 某种条件为真时,程序这样处理:当某种条件为假时,程序那样处理. 2. 当某种条件为真时,程序一直这样处理: 这里的条件,在C#中就是逻辑运算.接下来我就 ...

  2. 华硕(ASUS)X554LP笔记本一开机就进入aptio setup utility 问题的解决

    某次因大意一直未插电,华硕(ASUS)X554LP笔记本后来没电关机.后来每次一开机就进入aptio setup utility界面,按F9调入默认配置,F10保存后退出,重启仍然进入aptio se ...

  3. typeloadexception 方法实现中引用的声明不能是final方法

    问题描述: 1. 修改了DVSNetClient项目,其依赖类库CameraDSP没有改动.CameraDSP_DVSNetClient.dll的版本编号和文件编号由1.0.0.0变为1.0.1.0. ...

  4. 主库binlog(master-log)与从库relay-log的关系

    主库binlog: # at # :: server id end_log_pos CRC32 COMMIT/*!*/; # at # :: server id end_log_pos CRC32 e ...

  5. IDEA打可执行jar包

    流程: 1. File ->Project Structure -> Artifacts -> + -> JAR -> From modules with depende ...

  6. Angular——单页面实例

    基本介绍 1.引入的route模块可以对路由的变化做出响应 2.创建的控制器中依然需要$http向后台请求数据 3.php中二维数据的遍历用的是foreach 4.php中$arr=array(),$ ...

  7. Java 基础入门随笔(5) JavaSE版——函数重载

    1.函数 函数就是定义在类中具有特定功能的一段独立小程序,也称为方法. 定义函数的格式: 修饰符 返回值类型 函数名(参数类型 形式参数1,参数类型 形式参数2,...)         {      ...

  8. 安装mask-rcnn问题汇总

    1. I download file from https://github.com/waleedka/coco. Then I placed the file in Mask_RCNN-master ...

  9. LR中日志参数的设置

    LR中日志参数的设置 1.Run-Time Setting日志参数的设置 在loadrunner的vuser菜单下的Run-Time Setting的General的LOG选项中可以对在执行脚本时Lo ...

  10. catkin_package()是什么意思?

    DEPENDS 和 CATKIN_DEPENDS 用来告诉 catkin 需要将你程序包A的哪些依赖项传递给使用 find_package(...) 查找你的程序包的程序包B. 而在CMakeList ...