collections.Counter 源码实现

Counter 的相关源码在lib下的collections.py里,本文所提及的源码是python2.7版本, 可参见github

__init__

class Counter(dict):
'''Dict subclass for counting hashable items. Sometimes called a bag
or multiset. Elements are stored as dictionary keys and their counts
are stored as dictionary values.
'''
def __init__(*args, **kwds):
'''Create a new, empty Counter object. And if given, count elements
from an input iterable. Or, initialize the count from another mapping
of elements to their counts. >>> c = Counter() # a new, empty counter
>>> c = Counter('gallahad') # a new counter from an iterable
>>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping
>>> c = Counter(a=4, b=2) # a new counter from keyword args '''
if not args:
raise TypeError("descriptor '__init__' of 'Counter' object "
"needs an argument")
self = args[0]
args = args[1:]
if len(args) > 1:
raise TypeError('expected at most 1 arguments, got %d' % len(args))
super(Counter, self).__init__()
self.update(*args, **kwds)

Counter 继承字典类来实现,初始化中对参数进行有效性校验,其中 args 接受除了 self 外最多一个未知参数。校验完成后调用自身的 update 方法来具体创建数据结构。

update

def update(*args, **kwds):
'''Like dict.update() but add counts instead of replacing them.
'''
if not args:
raise TypeError("descriptor 'update' of 'Counter' object "
"needs an argument")
self = args[0]
args = args[1:]
if len(args) > 1:
raise TypeError('expected at most 1 arguments, got %d' % len(args))
iterable = args[0] if args else None
if iterable is not None:
if isinstance(iterable, Mapping):
if self:
self_get = self.get
for elem, count in iterable.iteritems():
self[elem] = self_get(elem, 0) + count
else:
super(Counter, self).update(iterable) # fast path when counter is empty
else:
self_get = self.get
for elem in iterable:
self[elem] = self_get(elem, 0) + 1
if kwds:
self.update(kwds)

update 方法先检查参数,位置参数除了self外只允许有一个。然后对传入的参数进行判断,如果是以 Counter(a=1,b=2) 的方式调用的,这时候取出 kwds({'a':1,'b'=2}) 再调用自身,将关键字参数转化为位置参数处理。

如果传入的位置参数是一个mapping类型的,对应于 Counter({'a':1,'b':2}) 这样的方式调用,这种情况会判断self是否为空,在初始化状态下self总是空的,这边加上判断是因为update 方法不仅近在 __init__() 里调用,还可以这样调用:

x1 = collections.Counter({'a': 1, 'b': 2})
x2 = collections.Counter(a=1, b=2)
x1.update(x2) # Counter()类型 isinstance(iterable, Mapping) 也返回 True # 或者这样调用
x1 = collections.Counter({'a': 1, 'b': 2})
x1.update('aab')

如果传入的不是一个mapping类型,那么会迭代该参数的每一项作为key添加到Counter中

most_common

def most_common(self, n=None):
'''List the n most common elements and their counts from the most
common to the least. If n is None, then list all element counts. >>> Counter('abcdeabcdabcaba').most_common(3)
[('a', 5), ('b', 4), ('c', 3)] '''
# Emulate Bag.sortedByCount from Smalltalk
if n is None:
return sorted(self.iteritems(), key=_itemgetter(1), reverse=True)
return _heapq.nlargest(n, self.iteritems(), key=_itemgetter(1))

如果调用 most_common 不指定参数n则默认返回全部(key, value)组成的列表,按照value降序排列。

itemgetter

这里用到了有趣的 itemgetter(代码里用了别名_itemgetter) , 它是来自 operator 模块中的方法,可以从下面的代码感受一下:

# 例子来源python文档
# 举例:
After f = itemgetter(1), the call f(r) returns r[1].
After g = itemgetter(2, 5, 3), the call g(r) returns (r[2], r[5], r[3]).
# 实现:
def itemgetter(*items):
if len(items) == 1:
item = items[0]
def g(obj):
return obj[item]
else:
def g(obj):
return tuple(obj[item] for item in items)
return g # 常见用法:
>>> itemgetter(1)('ABCDEFG')
'B'
>>> itemgetter(1,3,5)('ABCDEFG')
('B', 'D', 'F')
>>> itemgetter(slice(2,None))('ABCDEFG')
'CDEFG' >>> inventory = [('apple', 3), ('banana', 2), ('pear', 5), ('orange', 1)]
>>> getcount = itemgetter(1)
>>> map(getcount, inventory)
[3, 2, 5, 1]
>>> sorted(inventory, key=getcount)
[('orange', 1), ('banana', 2), ('apple', 3), ('pear', 5)]

heapquue

heap queue是“queue algorithm”算法的python实现,调用 _heapq.nlargest() 返回了根据每个value排序前n个大的(key, value)元组组成的列表。具体heap queue使用参见文档

elements

elements 方法实现了按照value的数值重复返回key。它的实现很精妙,只有一行:

def elements(self):
'''Iterator over elements repeating each as many times as its count. >>> c = Counter('ABCABC')
>>> sorted(c.elements())
['A', 'A', 'B', 'B', 'C', 'C']
'''
return _chain.from_iterable(_starmap(_repeat, self.iteritems()))

该实现里用到了 itertools 里的 repeat starmap chain 三个方法, 直接按照每项计数的次数重复返回每项内容,拼成一个列表。

repeat

repeat生成一个迭代器,根据第二个参数不停滴返回接受的第一个参数。直接看实现,很好理解, 类似实现如下:

def repeat(object, times=None):
# repeat(10, 3) --> 10 10 10
if times is None:
while True:
yield object
else:
for i in xrange(times):
yield object

starmap

starmap接受的第一个参数是一个函数,生成一个迭代器,不停滴将该函数以第二个参数传来的每一项为参数进行调用(说得抽象,看例子好理解),类似实现如下:

def starmap(function, iterable):
# starmap(pow, [(2,5), (3,2), (10,3)]) --> 32 9 1000
for args in iterable:
yield function(*args)

chain.from_iterable

chain.from_iterable 接受一个可迭代对象,返回一个迭代器,不停滴返回可迭代对象的每一项,类似实现如下:

def from_iterable(iterables):
# chain.from_iterable(['ABC', 'DEF']) --> A B C D E F
for it in iterables:
for element in it:
yield element

substract

substract的实现和update实现很像,不同之处在counter()相同的项的计数相加改成了相减。

def subtract(*args, **kwds):
'''Like dict.update() but subtracts counts instead of replacing them.
Counts can be reduced below zero. Both the inputs and outputs are
allowed to contain zero and negative counts. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which')
>>> c.subtract('witch') # subtract elements from another iterable
>>> c.subtract(Counter('watch')) # subtract elements from another counter
>>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch
0
>>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch
-1 '''
if not args:
raise TypeError("descriptor 'subtract' of 'Counter' object "
"needs an argument")
self = args[0]
args = args[1:]
if len(args) > 1:
raise TypeError('expected at most 1 arguments, got %d' % len(args))
iterable = args[0] if args else None
if iterable is not None:
self_get = self.get
if isinstance(iterable, Mapping):
for elem, count in iterable.items():
self[elem] = self_get(elem, 0) - count
else:
for elem in iterable:
self[elem] = self_get(elem, 0) - 1
if kwds:
self.subtract(kwds)

**

+, -, &, |

通过对 __add__, __sub__, __or__, __and__ 的定义,重写了 +, -, &, | ,实现了Counter间类似于集合的操作, 代码不难理解,值得注意的是,将非正的结果略去了:

def __add__(self, other):
'''Add counts from two counters. >>> Counter('abbb') + Counter('bcc')
Counter({'b': 4, 'c': 2, 'a': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
newcount = count + other[elem]
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count > 0:
result[elem] = count
return result def __sub__(self, other):
''' Subtract count, but keep only results with positive counts. >>> Counter('abbbc') - Counter('bccd')
Counter({'b': 2, 'a': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
newcount = count - other[elem]
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count < 0:
result[elem] = 0 - count
return result def __or__(self, other):
'''Union is the maximum of value in either of the input counters. >>> Counter('abbb') | Counter('bcc')
Counter({'b': 3, 'c': 2, 'a': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
other_count = other[elem]
newcount = other_count if count < other_count else count
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count > 0:
result[elem] = count
return result def __and__(self, other):
''' Intersection is the minimum of corresponding counts. >>> Counter('abbb') & Counter('bcc')
Counter({'b': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
other_count = other[elem]
newcount = count if count < other_count else other_count
if newcount > 0:
result[elem] = newcount
return result

其它

# 当用Pickler序列化时,遇到不知道怎么序列化时,查找__reduce__方法
def __reduce__(self):
return self.__class__, (dict(self),) # 重写删除方法,当Counter有这个key再删除,避免KeyError
def __delitem__(self, elem):
'Like dict.__delitem__() but does not raise KeyError for missing values.'
if elem in self:
super(Counter, self).__delitem__(elem) # %s : String (converts any Python object using str()).
# %r : String (converts any Python object using repr()).
def __repr__(self):
if not self:
return '%s()' % self.__class__.__name__
items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
return '%s({%s})' % (self.__class__.__name__, items) @classmethod
def fromkeys(cls, iterable, v=None):
# There is no equivalent method for counters because setting v=1
# means that no element can have a count greater than one.
raise NotImplementedError(
'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') # 实现__missing__方法,当Couter['no_field'] => 0, 字典默认的__missing__ 方法不实现会报错(KeyError)
def __missing__(self, key):
'The count of elements not in the Counter is zero.'
# Needed so that self[missing_item] does not raise KeyError
return 0

总结

总体来说,Counter通过对内置字典类型的继承重写来的实现,比较简洁,逻辑也很清楚,从源码中可以学到很多标准库里提供的很多的不常见的方法的使用,可以使代码更加简洁,思路更加流畅。

Python Counter() 的实现的更多相关文章

  1. Python Counter class

    Counter class https://docs.python.org/2/library/collections.html#collections.Counter # class collect ...

  2. 利用Python Counter快速计算出现次数topN的元素

    需要用Python写一段代码,给定一堆关键词,返回出现次数最多的n个关键字. 第一反应是采用一个dict,key存储关键词,value存储出现次数,如此一次遍历即可得出所有不同关键词的出现次数,而后排 ...

  3. python counter、闭包、generator、解数学方程、异常

    1.counter 2.闭包 3.generator 4.解数学方程 5.异常 1.python库——counter from collections import Counter breakfast ...

  4. Python Counter()计数工具

    Table of Contents 1. class collections.Counter([iterable-or-mapping]) 1.1. 例子 1.2. 使用实例 2. To Be Con ...

  5. Python Counter

    from collections import Counter print(Counter("宝宝今年特别喜欢王宝强")) # 计数 lst = ["jay", ...

  6. 【转】python Counter模块

    >>> c = Counter() # 创建一个新的空counter >>> c = Counter('abcasdf') # 一个迭代对象生成的counter & ...

  7. Python入门(二,基础)

    一,基本语法 Python标识符 在python里,标识符有字母.数字.下划线组成. 在python中,所有标识符可以包括英文.数字以及下划线(_),但不能以数字开头. python中的标识符是区分大 ...

  8. python 基础知识点整理 和详细应用

    Python教程 Python是一种简单易学,功能强大的编程语言.它包含了高效的高级数据结构和简单而有效的方法,面向对象编程.Python优雅的语法,动态类型,以及它天然的解释能力,使其成为理想的语言 ...

  9. python学习第一天内容整理

    .cnblogs_code { width: 500px } 一.python 的历史 (摘自百度百科,了解就ok) Python[1]  (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn ...

随机推荐

  1. Thu夏令营 总结

    感觉这次thu夏令营简直就是爆RP啊 竟然签了无条件本一 [Waring]RP已空 话说这次考试设定 竟然是下午两点开始考试 考到五点- - 导致中午必须午睡 宾馆里清华也不近 按原本试机安排到12点 ...

  2. 第三百五十二天 how can I 坚持

    如果要是今年找不到对象,明年去回济南, 怎么感觉那么不舍呢.生活总是有太多的无奈啊. 今天加了一天,倒是没感觉,只是感觉生活太空虚. 或许遗憾只是因为自己太懦弱.怎么说呢,还是那句话,经历的就会成长, ...

  3. oracle不用tsname文件的时候着怎么办

    oracle\product\10.2.0\client_2\odp.net\PublisherPolicy\Policy.9.2.Oracle.DataAccess.config 找到newVers ...

  4. HDU 1160 FatMouse's Speed (sort + dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1160 给你一些老鼠的体重和速度,问你最多需要几只可以证明体重越重速度越慢,并输出任意一组答案. 结构体 ...

  5. C# 动态绘制任务栏图标的实现

    通常我们在做一个应用时会遇到这样的需求:将收到的消息条数显示到任务栏,比如如下的效果 怎么实现呢? 答案是采用WindowsAPICodePack实现,具体参见:Windows 7 任务栏开发 之 覆 ...

  6. GetQueuedCompletionStatus的返回值

    完成端口GetQueuedCompletionStatus返回值的问题 先看看GetQueuedCompletionStatus函数的完整声明:BOOL GetQueuedCompletionStat ...

  7. WSARecv()

    简述:从一个套接口接收数据. #include <winsock2.h> int WSAAPI WSARecv ( SOCKET s, LPWSABUF lpBuffers, DWORD ...

  8. redis 重用命令

    一. set 1.smembers key 查看所有元素

  9. CentOS7 安装 MySQL 5.7.10

    卸载冲突的rpm包:rpm -qa|grep mariadbrpm -e --nodeps mariadb-libs-5.5.41-2.el7_0.x86_64 安装:rmp -ivh mysql-c ...

  10. NAND flash NOR flash SDRAM区别

    nand flash:适合大容量数据存储,类似硬盘:nor flash:适合小容量的程序或数据存储,类似小硬盘:sdram:主要用于程序执行时的程序存储.执行或计算,类似内存. 区别:nor flas ...