题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=3143

题意:一个无向连通图,顶点从1编号到n,边从1编号到m。小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达n号顶点时游走结束,总分为所有获得的分数之和。 现在,请你对这m条边进行编号,使得小Z获得的总分的期望值最小。

思路:若得到经过每条边的次数期望,那么只要贪心地给每条边赋权值即可。现在,我们先求每个点被经过的期望f[i],那么:

进而,由于从每个点到达与其相邻点的概率都是一样的,那么对于边e(i,j):

#include <iostream>
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <map>
#include <ctype.h>
#include <time.h>
     
     
#define abs(x) ((x)>=0?(x):-(x))
#define i64 long long
#define u32 unsigned int
#define u64 unsigned long long
#define clr(x,y) memset(x,y,sizeof(x))
#define CLR(x) x.clear()
#define ph(x) push(x)
#define pb(x) push_back(x)
#define Len(x) x.length()
#define SZ(x) x.size()
#define PI acos(-1.0)
#define sqr(x) ((x)*(x))
#define MP(x,y) make_pair(x,y)
#define EPS 1e-10
     
     
#define FOR0(i,x) for(i=0;i<x;i++)
#define FOR1(i,x) for(i=1;i<=x;i++)
#define FOR(i,a,b) for(i=a;i<=b;i++)
#define FORL0(i,a) for(i=a;i>=0;i--)
#define FORL1(i,a) for(i=a;i>=1;i--)
#define FORL(i,a,b)for(i=a;i>=b;i--)
     
     
#define rush() int CC;for(scanf("%d",&CC);CC--;)
#define Rush(n)  while(scanf("%d",&n)!=-1)
using namespace std;
     
     
void RD(int &x){scanf("%d",&x);}
void RD(i64 &x){scanf("%lld",&x);}
void RD(u64 &x){scanf("%I64u",&x);}
void RD(u32 &x){scanf("%u",&x);}
void RD(double &x){scanf("%lf",&x);}
void RD(int &x,int &y){scanf("%d%d",&x,&y);}
void RD(i64 &x,i64 &y){scanf("%lld%lld",&x,&y);}
void RD(u32 &x,u32 &y){scanf("%u%u",&x,&y);}
void RD(double &x,double &y){scanf("%lf%lf",&x,&y);}
void RD(double &x,double &y,double &z){scanf("%lf%lf%lf",&x,&y,&z);}
void RD(int &x,int &y,int &z){scanf("%d%d%d",&x,&y,&z);}
void RD(i64 &x,i64 &y,i64 &z){scanf("%lld%lld%lld",&x,&y,&z);}
void RD(u32 &x,u32 &y,u32 &z){scanf("%u%u%u",&x,&y,&z);}
void RD(char &x){x=getchar();}
void RD(char *s){scanf("%s",s);}
void RD(string &s){cin>>s;}
     
     
void PR(int x) {printf("%d\n",x);}
void PR(int x,int y) {printf("%d %d\n",x,y);}
void PR(i64 x) {printf("%lld\n",x);}
void PR(i64 x,i64 y) {printf("%lld %lld\n",x,y);}
void PR(u32 x) {printf("%u\n",x);}
void PR(u64 x) {printf("%llu\n",x);}
void PR(double x) {printf("%.3lf\n",x);}
void PR(double x,double y) {printf("%.5lf %.5lf\n",x,y);}
void PR(char x) {printf("%c\n",x);}
void PR(char *x) {printf("%s\n",x);}
void PR(string x) {cout<<x<<endl;}
 
void upMin(int &x,int y) {if(x>y) x=y;}
void upMin(i64 &x,i64 y) {if(x>y) x=y;}
void upMin(double &x,double y) {if(x>y) x=y;}
void upMax(int &x,int y) {if(x<y) x=y;}
void upMax(i64 &x,i64 y) {if(x<y) x=y;}
void upMax(double &x,double y) {if(x<y) x=y;}
     
const int mod=1000000007;
const i64 inf=((i64)1)<<60;
const double dinf=1000000000000000000.0;
const int INF=100000000;
const int N=505;
 
double a[N][N],ans[N];
int n,m,d[N];
vector<double> E;
 
int sgn(double x)
{
   if(x>EPS) return 1;
   if(x<-EPS) return -1;
   return 0; 
}
 
void Gauss()
{
    int i,j,k;
    double x;
    for(i=1;i<=n;i++)
    {
        for(j=i;j<=n;j++) if(sgn(a[j][i])) break;
        if(j>n) continue;
        for(k=1;k<=n+1;k++) swap(a[i][k],a[j][k]);
         
        for(j=i+1;j<=n;j++)
        {
            x=a[j][i]/a[i][i];
            if(!sgn(x)) continue;
            for(k=i;k<=n+1;k++) a[j][k]-=x*a[i][k];
        }
    }
    for(i=n;i>=1;i--)
    {
        ans[i]=a[i][n+1];
        for(j=i+1;j<=n;j++) ans[i]-=ans[j]*a[i][j];
        ans[i]/=a[i][i];
    }
}
 
vector<int> V[N],S,T;
 
int main()
{
    RD(n,m);
    int i,j,x,y;
    FOR1(i,m)
    {
        RD(x,y);  S.pb(x); T.pb(y);
        d[x]++; 
        V[x].pb(y);
        d[y]++;
        V[y].pb(x);
        
    }
    FOR1(i,n) FOR0(j,SZ(V[i]))
    {
        y=V[i][j];
        a[i][y]+=1.0/d[y];
    }
    FOR1(i,n-1) a[n][i]=0;
    FOR1(i,n) a[i][i]+=-1;
    a[1][n+1]=-1;
    Gauss();
    FOR0(i,m)
    {
        x=S[i]; y=T[i];
        E.pb(ans[x]/d[x]+ans[y]/d[y]);
    }
    sort(E.begin(),E.end());
    double Ans=0;
    FOR0(i,m) Ans+=(m-i)*E[i];
    printf("%.3lf\n",Ans);
}

BZOJ 3143 游走(高斯消元)的更多相关文章

  1. BZOJ 3143 HNOI2013 游走 高斯消元 期望

    这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号 ...

  2. bzoj 3143: [Hnoi2013]游走 高斯消元

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1026  Solved: 448[Submit][Status] ...

  3. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  4. 【xsy1201】 随机游走 高斯消元

    题目大意:你有一个$n*m$的网格(有边界),你从$(1,1)$开始随机游走,求走到$(n,m)$的期望步数. 数据范围:$n≤10$,$m≤1000$. 我们令 $f[i][j]$表示从$(1,1) ...

  5. [HNOI2013][BZOJ3143] 游走 - 高斯消元

    题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边 ...

  6. Luogu3232 HNOI2013 游走 高斯消元、期望、贪心

    传送门 这种无向图上从一个点乱走到另一个点的期望题目好几道与高斯消元有关 首先一个显然的贪心:期望经过次数越多,分配到的权值就要越小. 设$du_i$表示$i$的度,$f_i$表示点$i$的期望经过次 ...

  7. 【BZOJ3143】【HNOI2013】游走 高斯消元

    题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3143 我们令$P_i$表示从第i号点出发的期望次数.则$P_n$显然为$0$. 对于$P ...

  8. BZOJ3143:[HNOI2013]游走(高斯消元)

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  9. BZOJ 3143 游走 | 数学期望 高斯消元

    啊 我永远喜欢期望题 BZOJ 3143 游走 题意 有一个n个点m条边的无向联通图,每条边按1~m编号,从1号点出发,每次随机选择与当前点相连的一条边,走到这条边的另一个端点,一旦走到n号节点就停下 ...

  10. BZOJ 3143 游走(贪心+期望+高斯消元)

    一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...

随机推荐

  1. js 截取某个字符前面或者后面的字符串

    /* string 字符串; str 指定字符; split(),用于把一个字符串分割成字符串数组; split(str)[0],读取数组中索引为0的值(第一个值),所有数组索引默认从0开始; */ ...

  2. 设置NODE_ENV=production

    NodeJS - Express 4.0下设置环境变量NODE_ENV=production,并不是修改文件的配置信息,而是通过命令行来实现. 首先在命令行下进入项目的目录,然后先后执行如下命令: s ...

  3. Notes of the scrum meeting(10/31)

    meeting time:3:00~4:30p.m.,October 30th,2013 meeting place:绿园 attendees: 顾育豪                        ...

  4. 1934: [Shoi2007]Vote 善意的投票 - BZOJ

    Description幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照顾一下自己朋友的想法,他们也可以 ...

  5. 1-Highcharts环境介绍及配置

    Highcharts:功能强大.开源.美观.图表丰富.兼容绝大多数浏览器的纯js图表库,废话不多说,直接进入主题! 首先,下载Highcharts包文件,下载地址如下: 中文网下载中心:http:// ...

  6. [设计模式] 13 责任链模式 Chain of Responsibility

    转    http://blog.csdn.net/wuzhekai1985   http://www.jellythink.com/archives/878 向项目经理提交了休假申请,我的项目经理向 ...

  7. 【Android自学之旅】 Android开发环境的搭建

    [Android自学之旅] Android开发环境的搭建 搭建参考教程: http://www.oracle.com/technetwork/java/javase/downloads/jdk7-do ...

  8. [Unity3D+算法]一小时做个2048

    原地址:http://blog.csdn.net/dingxiaowei2013/article/details/36462749 048是继FlappyBird之后另一个比较热的轻量级的手游,简单易 ...

  9. threaded模式下,比prefork模式要省资源

    关于nginx + fastcgi + django 2009-03-10 17:14:43 分类: 系统运维 最近用django开发了一套广告投放系统,这套系统其实是一套网络广告联盟系统,包括广告的 ...

  10. D&F学数据结构系列——插入排序

    插入排序(insertion sort) 插入排序由P-1趟(pass)排序组成.对于P=1趟到P=N-1趟,插入排序保证从位置0到位置P-1上的元素为已排序状态.插入排序利用了这样的事实:位置0到位 ...