hdu 4635 Strongly connected(强连通)
考强连通缩点,算模板题吧,比赛的时候又想多了,大概是不自信吧,才开始认真搞图论,把题目想复杂了。
题意就是给你任意图,保证是simple directed graph,问最多加多少条边能使图仍然是simple directed graph,即 无重边且整个图非强连通。
容易想到把所有的点分成两个集合,只要在同一个方向上把所有边都连上就很理想。那么点该如何分配呢?差值尽可能的大,因为总的边数不单单是两集合之间的边,还要算上集合内部全部的边,注意集合内部是在保证不出现重边的条件下的所有的边。
令总点数为n,一个集合的点数为k,则两个集合内的边数分别为 k*(k-1),(n-k)*(n-k-1)条,而两集合之间的边共有 k*(n-k)条,答案就是三个值相加再减去已有的m条边。
注意:虽然最理想的是一个集合里只有一个点,但实际是一个强连通的最小点集,见最后一组样例,而且可能都在一棵树上,所以只要缩点后找到出度或入度为0的分量中点数最小的就可以了。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std; const int MAXN=; struct Edge{
int v,next;
int vis;
Edge(){}
Edge(int _v,int _next):v(_v),next(_next),vis(){}
}edge[MAXN]; int head[MAXN],tol;
int stk[MAXN],dfn[MAXN],low[MAXN],top,TT;
int sub[MAXN],scc,num[MAXN]; int a[MAXN],b[MAXN];
int in[MAXN],out[MAXN]; void add(int u,int v)
{
edge[tol]=Edge(v,head[u]);
head[u]=tol++;
} void tarjan(int u)
{
int v;
dfn[u]=low[u]=++TT;
stk[top++]=u;
for(int i=head[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(edge[i].vis)
continue;
edge[i].vis=;
if(!dfn[v]){
tarjan(v);
low[u]=min(low[u],low[v]);
}else if(!sub[v])
low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u]){
scc++;
int s=;
do{
v=stk[--top];
sub[v]=scc;
s++;
}while(v!=u);
num[scc]=s;
}
} void init()
{
tol=;
memset(head,-,sizeof(head)); memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(sub,,sizeof(sub));
} int main()
{
int T,n,m;
scanf("%d",&T);
for(int K=;K<=T;K++)
{
scanf("%d%d",&n,&m); init();
for(int i=;i<m;i++)
{
scanf("%d%d",&a[i],&b[i]);
add(a[i],b[i]);
} TT=;top=;scc=;
for(int i=;i<=n;i++)
if(!dfn[i])
tarjan(i); if(scc==){
printf("Case %d: -1\n",K);
continue;
} memset(in,,sizeof(in));
memset(out,,sizeof(out));
for(int i=;i<m;i++)
{
if(sub[a[i]]!=sub[b[i]]){
out[sub[a[i]]]++;
in[sub[b[i]]]++;
}
}
int min=;
for(int i=;i<=scc;i++)
{
if(!in[i]||!out[i])
if(num[min]>num[i])
min=i;
}
int k=num[min];
printf("Case %d: %d\n",K,k*(k-)+(n-k)*(n-k-)+k*(n-k)-m); }
return ;
}
hdu 4635 Strongly connected(强连通)的更多相关文章
- hdu 4635 Strongly connected 强连通缩点
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...
- HDU 4635 Strongly connected(强连通)经典
Strongly connected Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU 4635 Strongly connected (强连通分量)
题意 给定一个N个点M条边的简单图,求最多能加几条边,使得这个图仍然不是一个强连通图. 思路 2013多校第四场1004题.和官方题解思路一样,就直接贴了~ 最终添加完边的图,肯定可以分成两个部X和Y ...
- hdu 4635 Strongly connected 强连通
题目链接 给一个有向图, 问你最多可以加多少条边, 使得加完边后的图不是一个强连通图. 只做过加多少条边变成强连通的, 一下子就懵逼了 我们可以反过来想. 最后的图不是强连通, 那么我们一定可以将它分 ...
- HDU 4635 Strongly connected (强连通分量+缩点)
<题目链接> 题目大意: 给你一张有向图,问在保证该图不能成为强连通图的条件下,最多能够添加几条有向边. 解题分析: 我们从反面思考,在该图是一张有向完全图的情况下,最少删去几条边能够使其 ...
- HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】
Strongly connected Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
- HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)
Strongly connected Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- HDU 4635 Strongly connected (Tarjan+一点数学分析)
Strongly connected Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) ...
- HDU 4635 Strongly connected(强连通分量,变形)
题意:给出一个有向图(不一定连通),问最多可添加多少条边而该图仍然没有强连通. 思路: 强连通分量必须先求出,每个强连通分量包含有几个点也需要知道,每个点只会属于1个强连通分量. 在使图不强连通的前提 ...
随机推荐
- Win7(包括32和64位)使用GitHub
关于安装路径:32位可选择安装目录,但64位建议使用默认安装目录,否则Git Extensions配置会出问题 安装参考网址 http://code.google.com/p/tortoisegit/ ...
- Matlab中数组下标是logical,如何处理?
K>> a = 10*ones(1,10); K>> b = [1 56 23 5 6 45 9 7 89 10]; K>> c = b<a c = 1 0 ...
- 帝国cms如何调用栏目别名作为分类标题?[!--classname--]标签不能用
用帝国cms建站安全性和生成速度会比dedecms好些,但ecms有个比较不方便的地方就是后台默认模板栏目那边没有一个seo标题设置的输入框,列表模板用的是[!--pagetitle--]标签,那么分 ...
- 利用Qemu Guest Agent (Qemu-ga) 实现 Openstack 监控平台
经常使用vmWare的同学都知道有vmware-tools这个工具,这个安装在vm内部的工具,可以实现宿主机与虚拟机的通讯,大大增强了虚拟机的性能与功能, 如vmware现在的Unity mode下可 ...
- mySql 的基本操作
mysql -uroot -proot show databases; use ltcl_net;show tables; desc tablename; 查看表结构 create table tes ...
- PKU 1458 Common Subsequence(最长公共子序列,dp,简单)
题目 同:ZJU 1733,HDU 1159 #include <stdio.h> #include <string.h> #include <algorithm> ...
- javascript表格的添加和删除
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...
- Ubuntu环境下手动配置ant
配置ant 1. 下载ant(http://ant.apache.org/bindownload.cgi) 例如我下载的是:apache-ant-1.9.4-bin.tar.gz 解压ant,将文件夹 ...
- hdu 1536/1944 / POJ 2960 / ZOJ 3084 S-Nim 博弈论
简单的SG函数应用!!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #inclu ...
- 【转】Windows平台SSH登录Linux并使用图形化界面
备注:经验证本文提供的方法可行且比使用VNC简洁一些.略有修改. [日期:2011-09-06] 来源:Linux社区 作者:tianhuadihuo http://www.linuxidc ...