Monopoly odds

In the game, Monopoly, the standard board is set up in the following way:

                     
GO A1 CC1 A2 T1 R1 B1 CH1 B2 B3 JAIL
H2                   C1
T2                   U1
H1                   C2
CH3                   C3
R4                   R2
G3                   D1
CC3                   CC2
G2                   D2
G1                   D3
G2J F3 U2 F2 F1 R3 E3 E2 CH2 E1 FP

A player starts on the GO square and adds the scores on two 6-sided dice to determine the number of squares they advance in a clockwise direction. Without any further rules we would expect to visit each square with equal probability: 2.5%. However, landing on G2J (Go To Jail), CC (community chest), and CH (chance) changes this distribution.

In addition to G2J, and one card from each of CC and CH, that orders the player to go directly to jail, if a player rolls three consecutive doubles, they do not advance the result of their 3rd roll. Instead they proceed directly to jail.

At the beginning of the game, the CC and CH cards are shuffled. When a player lands on CC or CH they take a card from the top of the respective pile and, after following the instructions, it is returned to the bottom of the pile. There are sixteen cards in each pile, but for the purpose of this problem we are only concerned with cards that order a movement; any instruction not concerned with movement will be ignored and the player will remain on the CC/CH square.

  • Community Chest (2/16 cards):
    1. Advance to GO
    2. Go to JAIL
  • Chance (10/16 cards)
    1. Advance to GO
    2. Go to JAIL
    3. Go to C1
    4. Go to E3
    5. Go to H2
    6. Go to R1
    7. Go to next R (railway company)
    8. Go to next R
    9. Go to next U (utility company)
    10. Go back 3 squares

The heart of this problem concerns the likelihood of visiting a particular square. That is, the probability of finishing at that square after a roll. For this reason it should be clear that, with the exception of G2J for which the probability of finishing on it is zero, the CH squares will have the lowest probabilities, as 5/8 request a movement to another square, and it is the final square that the player finishes at on each roll that we are interested in. We shall make no distinction between “Just Visiting” and being sent to JAIL, and we shall also ignore the rule about requiring a double to “get out of jail”, assuming that they pay to get out on their next turn.

By starting at GO and numbering the squares sequentially from 00 to 39 we can concatenate these two-digit numbers to produce strings that correspond with sets of squares.

Statistically it can be shown that the three most popular squares, in order, are JAIL (6.24%) = Square 10, E3 (3.18%) = Square 24, and GO (3.09%) = Square 00. So these three most popular squares can be listed with the six-digit modal string: 102400.

If, instead of using two 6-sided dice, two 4-sided dice are used, find the six-digit modal string.


大富翁几率

大富翁游戏的标准棋盘大致如下图所示:

 0 2 10 
GO A1 CC1 A2 T1 R1 B1 CH1 B2 B3 JAIL
H2-39                   C1 -11
T2-38                   U1 - 12
H1-37                   C2 - 13
CH3-36                   C3 -14
R4-35                   R2 - 15
G3-34                   D1 - 16
CC3-33                   CC2 -17
G2-32                   D2 - 18
G1-31                   D3 - 19
G2J -30 F3-29 U2-28 F2-27 F1- 26 R3 - 25 E3-24 E2 - 23 CH2 - 22 E1 - 21 FP - 20

玩家从标记有“GO”的方格出发,掷两个六面的骰子并将点数和相加,作为本轮他们前进的步数。如果没有其它规则,那么落在每一格上的概率应该是2.5%。但是,由于“G2J”(入狱)、“CC”(宝箱卡)和“CH”(机会卡)的存在,这个分布会有所改变。

除了落在“G2J”上,或者在“CC”或“CH”上抽到入狱卡之外,如果玩家连续三次都掷出两个相同的点数,则在第三次时将会直接入狱。

游戏开始时,“CC”和“CH”所需的卡片将被洗牌打乱。当一个玩家落在“CC”或“CH”上时,他们从宝箱卡和机会卡的牌堆最上方取一张卡并遵循指令行事,并将该卡再放回牌堆的最下方。宝箱卡和机会卡都各有16张,但我们只关心会影响到移动的卡片,其它的卡片我们都将无视它们的效果。

  • 宝箱卡 (2/16 张卡):

    • 1 回到起点“GO”
    • 2 进入监狱“JAIL”
  • 机会卡 (10/16 张卡):
    • 1 回到起点“GO”
    • 2 进入监狱“JAIL”
    • 3 移动到“C1”
    • 4 移动到“E3”
    • 5 移动到“H2”
    • 6 移动到“R1”
    • 7 移动到下一个“R”(铁路公司)
    • 8 移动到下一个“R”
    • 9移动到下一个“U”(公共服务公司)
    • 10 后退三步

这道题主要考察掷出骰子后停在某个特定方格上的概率。显然,除了停在“G2J”上的可能性为0之外,停在“CH”格的可能性最小,因为有5/8的情况下玩家会移动到另一格。我们不区分是被送进监狱还是恰好落在监狱“JAIL”这一格,而且不考虑需要掷出两个相同的点数才能出狱的要求,而是假定进入监狱的第二轮就会自动出狱。

从起点“GO”出发,并将方格依次标记00到39,我们可以将这些两位数连接起来表示方格的序列。

统计学上来说,三个最有可能停下的方格分别是“JAIL”(6.24%)或方格10,E3(3.18%)或方格24以及“GO”(3.09%)或方格00。这三个方格可以用一个六位数字串表示:102400。

如果我们不用两个六面的骰子而是用两个四面的骰子,求出三个最有可能停下的方格构成的数字串。

解题:

通俗的说就是根据傻子的点数,来判断下一个步棋子应该在那里。然后根据上面说的实现就好了了

将上面的20个位置转换成数子00-39的表示形式

 0 2 10 
GO A1 CC1 A2 T1 R1 B1 CH1 B2 B3 JAIL
H2-39                   C1 -11
T2-38                   U1 - 12
H1-37                   C2 - 13
CH3-36                   C3 -14
R4-35                   R2 - 15
G3-34                   D1 - 16
CC3-33                   CC2 -17
G2-32                   D2 - 18
G1-31                   D3 - 19
G2J -30 F3-29 U2-28 F2-27 F1- 26 R3 - 25 E3-24 E2 - 23 CH2 - 22 E1 - 21 FP - 20

下面看程序吧

Java

package Level3;
import java.util.Random; public class PE084{ static void run() {
double result[] = new double[40];
int cnt =0;
int pos = 0;
int num =0;
int limit = 100000;
while(cnt <limit){
int r1 = new Random().nextInt(4) + 1;
int r2 = new Random().nextInt(4) + 1;
pos += r1 + r2;
if(pos > 39) pos -= 40;
if(r1 == r2) num += 1;
else num = 0;
if(pos == 2 || pos == 17 || pos ==33){
int r3 = new Random().nextInt(16) + 1;
if(r3 == 1) pos = 0;
if(r3 == 2) pos = 10;
}
if( pos ==7 || pos ==22 || pos ==36){
int r4 = new Random().nextInt(15) + 1;
if(r4 == 1) pos = 0;
if(r4 == 2) pos = 10;
if(r4 == 3) pos = 11;
if(r4 == 4) pos = 24;
if(r4 == 5) pos = 39;
if(r4 == 6) pos = 5;
if(r4 == 7 || r4== 8){
if(pos == 7) pos = 12;
if(pos == 22) pos = 25;
if(pos == 36) pos = 5;
}
if(r4 == 9){
if(pos ==7) pos = 12;
if(pos ==22) pos = 28;
if(pos ==36) pos = 12;
}
if(r4 == 10) pos -=3;
}
if(pos == 30 || num ==3) pos = 10;
result[pos] +=1;
cnt +=1;
if(num ==3) num =0;
}
for(int i=0;i<40;i++){
result[i] = result[i]*1.0/limit *100;
if(result[i] > 3)
System.out.println(i+"....."+ result[i]+"%");
}
} public static void main(String[] args){
long t0 = System.currentTimeMillis();
run();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms");
// 101524
// running time=0s187ms
}
}

Python

# coding=gbk
import time ;
import random;
t0 = time.time()
result = [0 for i in range(40)]
cnt = 0
pos = 0
num = 0
limit = 1000000
while cnt<limit:
# 两枚4面体筛子
r1 = random.randint(1, 4)
r2 = random.randint(1, 4)
# 和
pos += r1 + r2
# 循环
if pos >39:pos-=40
# 筛子是否相等
if r1==r2:num+=1
else:num = 0
if pos ==2 or pos == 17 or pos ==33:
r3 = random.randint(1,16)
if r3 == 1:pos = 0
if r3 == 2:pos = 10
if pos ==7 or pos == 22 or pos == 36:
r4 = random.randint(1,16)
if r4 == 1:pos = 0
if r4 == 2:pos = 10
if r4 == 3:pos = 11
if r4 == 4:pos = 24
if r4 == 5:pos = 39
if r4 == 6:pos = 5 if r4 ==7 or r4==8:
if pos ==7:pos =12
if pos ==22:pos =25
if pos ==36:pos =5
if r4 == 9:
if pos == 7:pos =12
if pos ==22:pos =28
if pos ==36:pos =12
if r4 ==10:
pos -=3
if pos == 30 or num==3:
pos = 10
if num == 3: num=0
result[pos]+=1
cnt+=1 result = [1.0*re/limit for re in result]
for i in range(40):
if result[i]>0.03:
print i ,result[i]
t1 = time.time()
print "running time=",(t1-t0),"s" # 10 0.070172
# 15 0.033969
# 16 0.032726
# 19 0.030785
# 21 0.030135
# 23 0.030071
# 24 0.033082
# 25 0.031051
# running time= 5.16399979591 s

答案:101524

Project Euler 84:Monopoly odds 大富翁几率的更多相关文章

  1. Python练习题 039:Project Euler 011:网格中4个数字的最大乘积

    本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...

  2. [project euler] program 4

    上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...

  3. Python练习题 029:Project Euler 001:3和5的倍数

    开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...

  4. Project Euler 9

    题意:三个正整数a + b + c = 1000,a*a + b*b = c*c.求a*b*c. 解法:可以暴力枚举,但是也有数学方法. 首先,a,b,c中肯定有至少一个为偶数,否则和不可能为以上两个 ...

  5. Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.

    In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentago ...

  6. project euler 169

    project euler 169 题目链接:https://projecteuler.net/problem=169 参考题解:http://tieba.baidu.com/p/2738022069 ...

  7. 【Project Euler 8】Largest product in a series

    题目要求是: The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × ...

  8. Project Euler 第一题效率分析

    Project Euler: 欧拉计划是一系列挑战数学或者计算机编程问题,解决这些问题需要的不仅仅是数学功底. 启动这一项目的目的在于,为乐于探索的人提供一个钻研其他领域并且学习新知识的平台,将这一平 ...

  9. Python练习题 049:Project Euler 022:姓名分值

    本题来自 Project Euler 第22题:https://projecteuler.net/problem=22 ''' Project Euler: Problem 22: Names sco ...

随机推荐

  1. hover和mouseover,mouseout的区别

    说道hover和mouseover,mouseout的区别,不得不联系到mouseenter,mouseleave. mouseover,mouseout是指鼠标指针在穿过/离开被选元素或其子元素时触 ...

  2. yum被锁定

    使用Yum的时候 提示yum被搜定了 . Another app is currently holding the yum lock; waiting for it to exit...   解决办法 ...

  3. PHP获取Cookie模拟登录CURL

    要提取google搜索的部分数据,发现google对于软件抓取它的数据屏蔽的厉害,以前伪造下 USER-AGENT 就可以抓数据,但是现在却不行了.利用抓包数据发现,Google 判断了 cookie ...

  4. Eclipse使用ButterKnife前,需要的配置步骤

    ButterKnife下载地址(7.0.1版本):http://files.cnblogs.com/files/zzw1994/butterknife-7.0.1.zip 官方下载地址(7.0.1版本 ...

  5. 1014. Waiting in Line (30)

    Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...

  6. 单例模式(Singleton)的6种实现

    1.1.1 摘要 在我们日常的工作中经常需要在应用程序中保持一个唯一的实例,如:IO处理,数据库操作等,由于这些对象都要占用重要的系统资源,所以我们必须限制这些实例的创建或始终使用一个公用的实例,这就 ...

  7. 从零开始学ios开发(十二):Table Views(上)

    这次学习的控件非常重要且非常强大,是ios应用中使用率非常高的一个控件,可以说几乎每个app都会使用到它,它就是功能异常强大的Table Views.可以打开你的iphone中的phone.Messa ...

  8. 使用PHP计算上一个月的今天

    一日,遇到一个问题,求上一个月的今天. 最开始我们使用 strtotime(“-1 month”) 函数求值,发现有一个问题,月长度不一样的月份的计算结果有误. 比如:2011-03-31,得到的结果 ...

  9. Nginx 老是抢先捕获了404 我想这个404我Yii项目来处理 要怎么配置?

    配置Nginx vhost的时候别指定error_page 它就不会跟Yii抢生意了 or 你弄一个frontendController   然后再里面 加上 $user->loginRequi ...

  10. LintCode-Unique Path II

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...